606
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bayesian calibration of the ICBM/3 soil organic carbon model constrained by data from long-term experiments and uncertainties of C inputs

, &

References

  • Batjes NH. Total carbon and nitrogen in the soils of the world. Eur J Soil Sci. 1996;47(2):151–163. doi: 10.1111/j.1365-2389.1996.tb01386.x.
  • Blujdea VN, Viñas RA, Federici S, et al. The EU greenhouse gas inventory for the LULUCF sector: I. Overview and comparative analysis of methods used by EU member states. Carbon Manag. 2016;6(5-6):247–259. doi: 10.1080/17583004.2016.1151504.
  • Menichetti L, Kätterer T, Bolinder MA. A Bayesian modeling framework for estimating equilibrium soil organic C sequestration in agroforestry systems. Agric Ecosyst Environ. 2020;303:107118. doi: 10.1016/j.agee.2020.107118.
  • Keel SG, Leifeld J, Mayer J, et al. Large uncertainty in soil carbon modelling related to method of calculation of plant carbon input in agricultural systems. Eur J Soil Sci. 2017;68(6):953–963. doi: 10.1111/ejss.12454.
  • Pausch J, Kuzyakov Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Chang Biol. 2017;24(1):1–12. doi: 10.1111/gcb.13850.
  • Bolinder MA, Janzen HH, Gregorich EG, et al. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric Ecosyst Environ. 2007;118(1-4):29–42. doi: 10.1016/j.agee.2006.05.013.
  • Shibu ME, Leffelaar PA, Van Keulen H, et al. Quantitative description of soil organic matter dynamics – a review of approaches with reference to rice-based cropping systems. Geoderma. 2006;137(1-2):1–18. doi: 10.1016/j.geoderma.2006.08.008.
  • Barber DA, Martin JK. The release of organic substances by cereal roots into soil. N Phytol. 1976;76(1):69–80. doi: 10.1111/j.1469-8137.1976.tb01439.x.
  • Sauerbeck DR, Johnen BG. Root formation and decomposition during plant growth. In: Editorial staff of the International Atomic Energy Agency, editor. Soil organic matter studies, vol. I. Vienna: International Atomic Energy Agency; 1977. p. 141–148.
  • Plénet D, Lubet E, Juste C. Évolution à long terme du statut carboné du sol en monoculture non irriguée du maïs (Zea mays L). Agron. 1993;13(8):685–698. doi: 10.1051/agro:19930802.
  • Rasse DP, Rumpel C, Dignac M-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil. 2005;269(1-2):341–356. doi: 10.1007/s11104-004-0907-y.
  • Amos B, Walters DT. Maize root biomass and net rhizodeposited carbon: an analysis of the literature. Soil Sci Soc Am J. 2006;70(5):1489–1503. doi: 10.2136/sssaj2005.0216.
  • Hirte J, Leifeld J, Abiven S, et al. Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity. Agric Ecosyst Environ. 2018;265:556–566. doi: 10.1016/j.agee.2018.07.010.
  • Bolinder MA, Angers DA, Giroux M, et al. Estimating C inputs retained as soil organic matter from corn (Zea mays L). Plant Soil. 1999;215(1):85–91. doi: 10.1023/A:1004765024519.
  • Wiesmeier M, Hübner R, Dechow R, et al. Estimation of past and recent carbon input by crops into agricultural soils of southeast Germany. Eur J Agron. 2014;61:10–23. doi: 10.1016/j.eja.2014.08.001.
  • Taghizadeh-Toosi A, Christensen BT, Glendining M, et al. Consolidating soil carbon turnover models by improved estimates of belowground carbon input. Sci Rep. 2016;6(1):32568. doi: 10.1038/srep32568.
  • Taghizadeh-Toosi A, Cong W-F, Eriksen J, et al. Visiting dark sides of model simulation of carbon stocks in European temperature agricultural soils: allometric function and model initialization. Plant Soil. 2020;450(1-2):255–272. doi: 10.1007/s11104-020-04500-9.
  • Fan J, McConkey B, Janzen H, et al. Harvest index-yield relationship for estimating crop residue in cold continental climates. Field Crops Res. 2017;204:153–157. doi: 10.1016/j.fcr.2017.01.014.
  • Menichetti L, Kätterer T, Leifeld J. Parametrization consequences of constraining soil organic matter models by total carbon and radiocarbon using long-term field data. Biogeosciences. 2016;13(10):3003–3019. doi: 10.5194/bg-13-3003-2016.
  • Hénin S, Dupuis M. Essai de bilan de la matière organique du sol. Ann Agron. 1945;15:17–29.
  • Boiffin J, Kéli Zagbahi J, Sebillotte M. Système de culture et statut organique des sols dans le noyonnais: application du modèle de Hénin-Dupuis. Agronomie. 1986;6(5):437–446. doi: 10.1051/agro:19860503.
  • Soltner D. Les grandes productions végétales: phytotechnie spéciale, Tome 1, Le sol et son amélioration. Collection Sciences et Techniques Agricoles, Sainte Gemmes sur Loire, France; 2000. p. 468.
  • Johnson JM-F, Allmaras RR, Reicosky DC. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J. 2006;98(3):622–636. doi: 10.2134/agronj2005.0179.
  • Dechow R, Franko U, Kätterer T, et al. Evaluation of the RothC model as a prognostic tool for the prediction of SOC trends in response to management practices on arable land. Geoderma. 2019;337:463–478. doi: 10.1016/j.geoderma.2018.10.001.
  • Clivot H, Mouny J-C, Duparque A, et al. Modeling soil organic carbon evolution in long-term arable experiments with AMG model. Environ Model Softw. 2019;118:99–113. doi: 10.1016/j.envsoft.2019.04.004.
  • Andrén O, Kätterer T. ICBM : the introductory carbon balance model for exploration of soil carbon balances. Ecol Appl. 1997;7(4):1226–1236. doi: 10.1890/1051-0761(1997)007[1226:ITICBM]2.0.CO;2.
  • Andrén O, Kätterer T, Karlsson T. ICBM regional model for estimations of dynamics of agricultural soil carbon pools. Nutr Cycl Agroecosyst. 2004;70(2):231–239. doi: 10.1023/B:FRES.0000048471.59164.ff.
  • Kröbel R, Bolinder MA, Janzen HH, et al. Canadian farm-level soil carbon change assessment by merging the greenhouse gas model Holos with the Introductory Carbon Balance Model (ICBM). Agric Syst. 2016;143:76–85. doi: 10.1016/j.agsy.2015.12.010.
  • Kätterer T, Bolinder MA, Andrén O, et al. Roots contribute more to refractory soil organic matter than aboveground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ. 2011;141(1-2):184–192. doi: 10.1016/j.agee.2011.02.029.
  • Kätterer T, Börjesson G, Kirchmann H. Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agric Ecosyst Environ. 2014;189:110–118. doi: 10.1016/j.agee.2014.03.025.
  • Ericsson N, Porsö C, Ahlgren S, et al. Time-dependent climate impact of a bioenergy system – methodology development and application to Swedish conditions. GCB Bioenergy. 2013;5(5):580–590. doi: 10.1111/gcbb.12031.
  • Hammar T, Ericsson N, Sundberg C, et al. Climate impact of willow grown for bioenergy in Sweden. Bioenerg Res. 2014;7(4):1529–1540. doi: 10.1007/s12155-014-9490-0.
  • Barré P, Eglin T, Christensen B, et al. Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments. Biogeosciences. 2010;7(11):3839–3850. doi: 10.5194/bg-7-3839-2010.
  • Kätterer T, Andrén O. The ICBM family of analytically solved models of soil carbon, nitrogen and microbial biomass dynamics—descriptions and application examples. Ecol Modell. 2001;136(2-3):191–207. doi: 10.1016/S0304-3800(00)00420-8.
  • Bolinder MA, Andrén O, Kätterer T, et al. Soil organic carbon sequestration potential for Canadian agricultural ecoregions calculated using the Introductory Carbon Balance Model. Can J Soil Sci. 2008;88(4):451–460. 2008doi: 10.4141/CJSS07093.
  • Lloyd J, Taylor J. On the temperature dependence of soil respiration. Funct Ecol. 1994;8(3):315–323. doi: 10.2307/2389824.
  • Ratkowsky DA, Olley J, Ross T. Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J Theor Biol. 2005;233(3):351–362. doi: 10.1016/j.jtbi.2004.10.016.
  • Moyano FE, Manzoni S, Chenu C. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem. 2013;59:72–85. doi: 10.1016/j.soilbio.2013.01.002.
  • Kätterer T, Andrén O, Jansson P-E. Pedotransfer functions for estimating plant available water and bulk density in Swedish agricultural soils. Acta Agric Scand B Soil Plant Sci. 2006;56(4):263–276. doi: 10.1080/09064710500310170.
  • Andrén O, Kätterer T, Karlsson T, et al. Soil C balances in Swedish agricultural soils 1990-2004, with preliminary projections. Nutr Cycl Agroecosyst. 2008;81(2):129–144. doi: 10.1007/s10705-008-9177-z.
  • Menichetti L, Ågren GI, Barré P, et al. Generic parameters of first-order kinetics accurately describe soil organic matter decay in bare fallow soils over a wide edaphic and climatic range. Sci Rep. 2019;9(1):20319. doi: 10.1038/s41598-019-55058-1.
  • Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling JAGS: just another Gibbs sampler. In: Hornik K, Leisch F, Zeileis A, editors. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Vienna; 2003.
  • Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.
  • Gelman A, Carlin J, Stern B, et al.. Bayesian data analysis. 2nd ed. London: Chapman & Hall; 2004.
  • Kruschke JK, Aguinis H, Joo H. The time has come: Bayesian methods for data analysis in the organizational sciences. Organ Res Methods. 2012;15(4):722–752. doi: 10.1177/1094428112457829.
  • Coleman K. and Jenkinson, D. S. RothC-26.3 - a model for the turnover of carbon in soilA model for the turnover of carbon in soil. In Powlson DS, Smith P, Smith JU, editors. Evaluation of soil organic matter models, NATO ASI series. Berlin: Springer-Verlag; 1996. p. 237–246.
  • Franko U, Oelschlägel B, Schenk S. Simulation of temperature-, water-and nitrogen dynamics using the model CANDY. Ecol Modell. 1995;81(1-3):213–222. doi: 10.1016/0304-3800(94)00172-E.
  • Kätterer T, Eckersten H, Andrén O, et al. Winter wheat biomass and nitrogen dynamics under different fertilization and water regimes: application of a crop growth model. Ecol Modell. 1997;102(2-3):301–314. doi: 10.1016/S0304-3800(97)00065-3.
  • Kätterer T, Hansson A-C, Andrén O. Wheat root biomass and nitrogen dynamics – effects of daily irrigation and fertilization. Plant Soil. 1993;151(1):21–30. doi: 10.1007/BF00010782.
  • Calvo Buendia E, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko Y, Shermanau P, Federici, S. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Switzerland; IPCC Task Force on National Greenhouse Gas Inventories; 2019.
  • Bolinder MA, Angers DA, Dubuc J-P. Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agric Ecosyst Environ. 1997;63(1):61–66. doi: 10.1016/S0167-8809(96)01121-8.
  • Bolinder MA, Kätterer T, Poeplau C, et al. Net primary productivity and belowground crop residue inputs for root crops: potato (Solanum tuberosum L.) and sugar beet (Beta vulgaris L). Can J Soil Sci. 2015;95(2):87–93. doi: 10.4141/cjss-2014-091.
  • Ilola A, Elomaa E, Pulli S. Testing a Danish growth model for barley, turnip rape and timothy in Finnish conditions. AFSci. 1988;60(7):631–660. doi: 10.23986/afsci.72334.
  • Barraclough PB. Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yielding winter oilseed rape crop. Plant Soil. 1989;119(1):59–70. doi: 10.1007/BF02370269.
  • Pietola L, Alakukku L. Root growth dynamics and biomass input by Nordic annual field crops. Agric Ecosyst Environ. 2005;108(2):135–144. doi: 10.1016/j.agee.2005.01.009.
  • Gan YT, Campbell CA, Janzen HH, et al. Carbon input to soil from oilseed and pulse crops on the Canadian prairies. Agric Ecosyst Environ. 2009;132(3-4):290–297. doi: 10.1016/j.agee.2009.04.014.
  • Williams JD, McCool DK, Reardon CL, et al. Root:shoot ratios and belowground biomass distribution for pacific northwest dryland crops. J Soil Water Conserv. 2013;68(5):349–360. doi: 10.2489/jswc.68.5.349.
  • Pausch J, Tian J, Riederer M, et al. Estimation of rhizodeposition at field scale: upscaling of a 14C labeling study. Plant Soil. 2012;364(1-2):273–285. doi: 10.1007/s11104-012-1363-8.
  • Buyanovsky GA, Wagner GH. Crop residue input to soil organic matter on Sanborn field. In: Paul EA, Paustian KH, Elliott ET, et al. editor. Soil organic matter in temperate agroecosystems: long-term experiments in North America. Boca Raton (FL): CRC Press; 1997. p. 73–83.
  • Bolinder MA, Kätterer T, Andrén O, et al. Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment. Can J Soil Sci. 2012;92(6):821–833. doi: 10.4141/cjss2012-036.
  • Andrén O, Kihara J, Bationo A, et al. Soil climate and decomposer activity in Sub-Saharan Afrika estimated from standard weather station data: a simple climate index for soil carbon balance calculations. AMBIO. 2007;36(5):379–386. doi: 10.1579/0044-7447(2007)36[379:SCADAI]2.0.CO;2.
  • Tang J, Riley WJ. Linear two-pool models are insufficient to infer soil organic matter decomposition temperature sensitivity from incubations. Biogeochemistry. 2020;149(3):251–261. doi: 10.1007/s10533-020-00678-3.
  • Dungait JaJ, Hopkins DW, Gregory AS, et al. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol. 2012;18(6):1781–1796. doi: 10.1111/j.1365-2486.2012.02665.x.
  • Kleber M, Nico PS, Plante A, et al. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Chang Biol. 2011;17(2):1097–1107. doi: 10.1111/j.1365-2486.2010.02278.x.
  • Farina R, Sándor R, Abdalla M, et al. Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils. Glob Chang Biol. 2021;27(4):904–928. doi: 10.1111/gcb.15441.
  • Fleischer K, Dolman AJ, van der Molen MK, et al. Nitrogen deposition maintains a positive effect on terrestrial carbon sequestration in the 21st century despite growing phosphorus limitation at regional scales. Global Biogeochem Cycles. 2019;33(6):810–824. doi: 10.1029/2018GB005952.
  • Ladha JK, Reddy CK, Padre AT, et al. Role of nitrogen fertilization in sustaining organic matter in cultivated soils. J Environ Qual. 2011;40(6):1756–1766. doi: 10.2134/jeq2011.0064.
  • Poeplau C, Don A. A simple soil organic carbon level metric beyond the organic carbon‐to‐clay ratio. Soil Use Manage. 2023;39(3):1057–1067. doi: 10.1111/sum.12921.
  • Feng J, Zhu B. Global patterns and associated drivers of priming effect in response to nutrient addition. Soil Biol Biochem. 2021;153:108118. doi: 10.1016/j.soilbio.2020.108118.
  • Cagnarini C, Renella G, Mayer J, et al. Multi-objective calibration of RothC using measured carbon stocks and auxiliary data of a long-term experiment in Switzerland. Eur J Soil Sci. 2019;70(4):819–832. doi: 10.1111/ejss.12802.
  • Juston J. Environmental modeling: learning from uncertainty; Doctoral dissertation. Lund University; 2023. https://portal.research.lu.se/sv/publications/environmental-modelling-learning-from-uncertainty
  • Larson WE, Clapp CE, Pierre WH, et al. Effects of increasing amounts of organic residues on continuous corn: II. Organic carbon, nitrogen, phosphorus and sulfur. Agron J. 1972;64(2):204–209. doi: 10.2134/agronj1972.00021962006400020023x.
  • Barber SA. Corn residue management and soil organic matter. Agron J. 1979;71(4):625–627. doi: 10.2134/agronj1979.00021962007100040025x.
  • Delas J, Molot C. Effet de divers amendements organiques sur les rendements du maïs et de la pomme de terre cultivés en sol sableux. Agron. 1983;3(1):19–26. doi: 10.1051/agro:19830103.
  • Angers DA, Voroney RP, Côté D. Dynamics of soil organic matter and corn residues affected by tillage practices. Soil Sci Soc Am J. 1995;59(5):1311–1315. doi: 10.2136/sssaj1995.03615995005900050016x.
  • Liang C, Hao X, Schoenau J, et al. Manure-induced carbon retention measured from long-term field studies in Canada. Agric Ecosyst Environ. 2021;321:107619. doi: 10.1016/j.agee.2021.107619.
  • Palosuo T, Heikkinen J, Regina K. Method for estimating soil carbon stock changes in Finnish mineral cropland and grassland soils. Carbon Manag. 2016;6(5-6):207–220. doi: 10.1080/17583004.2015.1131383.
  • Xu H, Vandecasteele B, Maenhout P, et al. Maize root biomass and architecture depend on site but not on variety: consequences for prediction of C inputs and spread in topsoil based on root-to-shoot ratios. Eur J Agron. 2020;119:126121. doi: 10.1016/j.eja.2020.126121.