173
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Recent advancement in thermochemical conversion of biomass to biofuel

, , , , , , & show all
Pages 587-604 | Received 24 Mar 2023, Accepted 18 Sep 2023, Published online: 17 Oct 2023

References

  • International Energy Agency. World Energy Outlook; 2021 [Internet]. Paris. Available from: https://www.iea.org/reports/world-energy-outlook-2021.
  • Rahimi Z, Anand A, Gautam S. An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural wastes. Energy Nexus. 2022;7(July):100125. doi: 10.1016/j.nexus.2022.100125.
  • Breyer C, Khalili S, Bogdanov D, et al. On the history and future of 100% renewable energy systems research. IEEE Access. 2022;10:78176–78218. doi: 10.1109/ACCESS.2022.3193402.
  • Fan Q, Fu P, Song C, et al. Valorization of waste biomass through hydrothermal liquefaction: a review with focus on linking hydrothermal factors to products characteristics. Ind Crops Prod. 2023;191:116017. doi: 10.1016/j.indcrop.2022.116017.
  • Jodeiri AM, Goldsworthy MJ, Buffa S, et al. Role of sustainable heat sources in transition towards fourth generation district heating – a review. Renewable Sustainable Energy Rev. 2022;158:112156. doi: 10.1016/j.rser.2022.112156.
  • Popp J, Kovács S, Oláh J, et al. Bioeconomy: biomass and biomass-based energy supply and demand. New Biotechnol. 2021;60:76–84. doi: 10.1016/j.nbt.2020.10.004.
  • Limmeechokchai B, Bahadur Pradhan B, Chunark P, et al. Energy system transformation for attainability of net zero emissions in Thailand. Int J Sustainable Energy Plann Manage. 2022;35:27–44. doi: 10.54337/ijsepm.7116.
  • Junginger M, Koppejan J, Goh CS. Sustainable bioenergy deployment in east and South East asia: notes on recent trends. Sustain Sci. 2020;15(5):1455–1459. doi: 10.1007/s11625-019-00712-w.
  • Qyyum MA, Ali Shah SF, Qadeer K, et al. Biowaste to bioenergy options for sustainable economic growth opportunities in developing countries: product space model analysis and policy map development. Renewable Sustainable Energy Rev. 2022;169:112832. doi: 10.1016/j.rser.2022.112832.
  • Jha S, Nanda S, Acharya B, et al. A review of thermochemical conversion of waste biomass to biofuels. Energies (Basel. 2022;15(17):6352. ) doi: 10.3390/en15176352.
  • Devaraja UMA, Dissanayake CLW, Gunarathne DS, et al. Oxidative torrefaction and torrefaction-based biorefining of biomass: a critical review. Biofuel Res J. 2022;9(3):1672–1696. doi: 10.18331/BRJ2022.9.3.4.
  • Wang Y, Akbarzadeh A, Chong L, et al. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: a review. Chemosphere. 2022;297:134181. doi: 10.1016/j.chemosphere.2022.134181.
  • Ren X, Shanb Ghazani M, Zhu H, et al. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: a review. Appl Energy. 2022;315:118970. doi: 10.1016/j.apenergy.2022.118970.
  • Yiin CL, Odita E B, Mun Lock SS, et al. A review on potential of green solvents in hydrothermal liquefaction (HTL) of lignin. Bioresour Technol. 2022;364:128075. doi: 10.1016/j.biortech.2022.128075.
  • Jatoi AS, Shah AA, Ahmed J, et al. Hydrothermal liquefaction of lignocellulosic and Protein-Containing biomass: a comprehensive review. Catalysts. 2022;12(12):1621. doi: 10.3390/catal12121621.
  • Tien Thanh N, Mostapha M, Lam MK, et al. Fundamental understanding of in-situ transesterification of microalgae biomass to biodiesel: a critical review. Energy Convers Manage. 2022;270:116212. doi: 10.1016/j.enconman.2022.116212.
  • Krishnan RY, Manikandan S, Subbaiya R, et al. Advanced thermochemical conversion of algal biomass to liquid and gaseous biofuels: a comprehensive review of recent advances. Sustainable Energy Technol Assess. 2022;52:102211. doi: 10.1016/j.seta.2022.102211.
  • Oliveira M, Ramos A, Ismail TM, et al. A review on plasma gasification of solid residues: recent advances and developments. Energies. 2022;15(4):1475. doi: 10.3390/en15041475.
  • Rodriguez JJ, Ipiales RP, de la Rubia MA, et al. Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: an overview. Energy Fuels. 2021;35(21):17032–17050. doi: 10.1021/acs.energyfuels.1c01681.
  • Elgarahy AM, Hammad A, El-Sherif DM, et al. Thermochemical conversion strategies of biomass to biofuels, techno-economic and bibliometric analysis: a conceptual review. J Environ Chem Eng. 2021;9(6):106503. doi: 10.1016/j.jece.2021.106503.
  • Son Le H, Said Z, Tuan Pham M, et al. Production of HMF and DMF biofuel from carbohydrates through catalytic pathways as a sustainable strategy for the future energy sector. Fuel. 2022;324(PA):124474. doi: 10.1016/j.fuel.2022.124474.
  • Wang S, Dai G, Yang H, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. 2017;62:33–86. doi: 10.1016/j.pecs.2017.05.004.
  • Bai F-W, Yang S, Ho NWY. 3.05 - Fuel ethanol production from lignocellulosic biomass. In: Moo-Young M, editor. Comprehensive biotechnology. 3rd ed. Pergamon: Elsevier; 2019. p. 49–65. doi: 10.1016/B978-0-444-64046-8.00150-6.
  • da Silva AS, de Sá LRV, Aguieiras ECG, et al. Productive chain of biofuels and industrial biocatalysis: two important opportunities for Brazilian sustainable development. In: Biotechnology of microbial enzymes: production, biocatalysis and industrial applications. Elsevier Inc.; 2017. p. 545–581. doi: 10.1016/B978-0-12-803725-6.00020-0.
  • Seo MW, Lee SH, Nam H, et al. Recent advances of thermochemical conversieon processes for biorefinery. Bioresour Technol. 2022;343:126109. doi: 10.1016/j.biortech.2021.126109.
  • Cheng F, Brewer CE. Producing jet fuel from biomass lignin: potential pathways to alkyl-benzenes and cycloalkanes. Renewable Sustainable Energy Rev. 2017;72:673–722. doi: 10.1016/j.rser.2017.01.030.
  • Lim HY, Yusup S, Loy ACM, et al. Review on conversion of lignin waste into value-added resources in tropical countries. Waste Biomass Valor. 2021;12(10):5285–5302. doi: 10.1007/s12649-020-01307-8.
  • Hoang AT, Nižetić S, Ong HC, et al. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere. 2021;281:130878. doi: 10.1016/j.chemosphere.2021.130878.
  • de Oliveira M, Vaughan BE, Rykiel E. Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience. 2005;55(7):593–602. doi: 10.1641/0006-3568(2005)055[0593:EAFECD.2.0.CO;2]
  • Díaz V, Leyva-Díaz JC, Almécija MC, et al. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy. Bioresour Technol. 2022;363:127968. doi: 10.1016/j.biortech.2022.127968.
  • Malolan R, Gopinath KP, Vo DVN, et al. Green ionic liquids and deep eutectic solvents for desulphurization, denitrification, biomass, biodiesel, bioethanol and hydrogen fuels: a review. Environ Chem Lett. 2021;19(2):1001–1023. doi: 10.1007/s10311-020-01113-7.
  • Aron NSM, Khoo KS, Chew KW, et al. Sustainability of the four generations of biofuels – a review. Int J Energy Res. 2020;44(12):9266–9282. doi: 10.1002/er.5557.
  • Gan YY, Chen WH, Ong HC, et al. Effect of wet torrefaction on pyrolysis kinetics and conversion of microalgae carbohydrates, proteins, and lipids. Energy Convers Manage. 2021;227:113609. doi: 10.1016/j.enconman.2020.113609.
  • Hoang AT, Ölçer AI, Nižetić S. Prospective review on the application of biofuel 2,5-dimethylfuran to diesel engine. J Inst Energy. 2021;94:360–386. doi: 10.1016/j.joei.2020.10.004.
  • Rybníček M, Kyncl T, Vavrčík H, et al. Dendrochronology improves understanding of the charcoal production history. Dendrochronologia. 2022;75:125994. doi: 10.1016/j.dendro.2022.125994.
  • FAO. Chapter 2. Wood carbonisation and the products it yields. In: Industrial charcoal making; 1985. Available from: https://www.fao.org/3/x5555e/x5555e03.htm.
  • Wilk M, Magdziarz A. Hydrothermal carbonization, torrefaction and slow pyrolysis of miscanthus giganteus. Energy. 2017;140:1292–1304. doi: 10.1016/j.energy.2017.03.031.
  • Fajfrlíková P, Brunerová A, Roubík H. Analyses of waste treatment in rural areas of east java with the possibility of low-pressure briquetting press application. Sustainability. 2020;12(19):8153. doi: 10.3390/su12198153.
  • Weng W, Li Z, Marshall P, et al. Participation of alkali and sulfur in ammonia combustion chemistry: investigation for ammonia/solid fuel co-firing applications. Combust Flame. 2022;244:112236. doi: 10.1016/j.combustflame.2022.112236.
  • Xu Y, Yang K, Zhou J, et al. Coal-biomass co-firing power generation technology: current status, challenges and policy implications. Sustainability. 2020;12(9):3692. doi: 10.3390/su12093692.
  • Kasai H, Fukushima H, Tamura M, Inubushi K, Nakata T. Meeting the challenge of realizing a high ratio co-firing system with woody biomass. IHI Eng Rev. 54(2) (2021). Available from: https://www.ihi.co.jp/en/technology/review_library/review_en/2021/_cms_conf01/__icsFiles/afieldfile/2021/11/25/Vol54No2_01.pdf.
  • Shahbaz M, Alnouss A, Ghiat I, et al. Resources, conservation & recycling a comprehensive review of biomass based thermochemical conversion technologies integrated with CO 2 capture and utilisation within BECCS networks. Resour Conserv Recycl. 2021;173(January):105734. doi: 10.1016/j.resconrec.2021.105734.
  • U.S. Energy Information Administration. Monthly Energy Review – November 2022 [Internet]. Washington, DC. Available from: www.eia.gov/mer.
  • Gomez-Bolivar J, Orozco RL, Stephen AJ, et al. Coupled biohydrogen production and Bio-Nanocatalysis for dual energy from cellulose: towards cellulosic waste up-Conversion into biofuels. Catalysts. 2022;12(6):577. doi: 10.3390/catal12060577.
  • Jhang SR, Lin YC, Chen KS, et al. Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen. Energy. 2020;209:118436. doi: 10.1016/j.energy.2020.118436.
  • Martínez-Martínez S, Rosa-Urbalejo D D L, Rua-Mojica LF, et al. Experimental analysis of real-world emissions using ultra-low carbon intensity biodiesel for a light-duty diesel vehicle in monterrey metropolitan area. Fuel. 2022;317:123408. doi: 10.1016/j.fuel.2022.123408.
  • Moore RH, Thornhill KL, Weinzierl B, et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature. 2017;543(7645):411–415. doi: 10.1038/nature21420.
  • Hou S, Chen X, Qiu R. Sustainable biofuel consumption in air passenger transport driven by carbon-tax policy. Sustainable Prod Consumption. 2022;31:478–491. doi: 10.1016/j.spc.2022.03.016.
  • Doliente SS, Narayan A, Tapia JFD, et al. Bio-aviation fuel: a comprehensive review and analysis of the supply chain components. Front Energy Res. 2020;8:110. doi: 10.3389/fenrg.2020.00110.
  • Wang Y, Cao Q, Liu L, et al. A review of low and zero carbon fuel technologies: achieving ship carbon reduction targets. Sustainable Energy Technol Assess. 2022;54:102762. doi: 10.1016/j.seta.2022.102762.
  • Seddiek IS, Ammar NR. Technical and eco-environmental analysis of blue/green ammonia-fueled RO/RO ships. Transp Res D Transp Environ. 2023;114:103547. doi: 10.1016/j.trd.2022.103547.
  • Gerlitz L, Mildenstrey E, Prause G. Ammonia as clean shipping fuel for the Baltic Sea Region. Transport Telecommun. 2022;23(1):102–112. doi: 10.2478/ttj-2022-0010.
  • Zincir B. Environmental and economic evaluation of ammonia as a fuel for short-sea shipping: a case study. Int J Hydrogen Energy. 2022;47(41):18148–18168. doi: 10.1016/j.ijhydene.2022.03.281.
  • Osman AI, Mehta N, Elgarahy AM, et al. Conversion of biomass to biofuels and life cycle assessment: a review. Environ Chem Lett. 2021;19(6):4075–4118. doi: 10.1007/s10311-021-01273-0.
  • Yek PNY, Cheng YW, Liew RK, et al. Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: a review. Renewable Sustainable Energy Rev. 2021;151:111645. doi: 10.1016/j.rser.2021.111645.
  • Lim HY, Yusup S. Chapter 2 - Technology to convert biomass to biooil: challenges and opportunity. In: Gurunathan B, Sahadevan R, Zakaria ZA, editors. Biofuels and bioenergy. Amsterdam, Netherlands: Elsevier; 2022. p. 25–40. doi: 10.1016/B978-0-323-85269-2.00025-3.
  • Okolie JA, Epelle EI, Tabat ME, et al. Waste biomass valorization for the production of biofuels and value-added products: a comprehensive review of thermochemical, biological and integrated processes. Process Saf Environ Prot. 2022;159:323–344. doi: 10.1016/j.psep.2021.12.049.
  • Okolie JA, Nanda S, Dalai AK, et al. A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renewable Sustainable Energy Rev. 2020;119:109546. doi: 10.1016/j.rser.2019.109546.
  • Okolie JA, Mukherjee A, Nanda S, et al. Next-generation biofuels and platform biochemicals from lignocellulosic biomass. Int J Energy Res. 2021;45(10):14145–14169. doi: 10.1002/er.6697.
  • Duan H, Zhang Z, Rahman MM, et al. Insight into torrefaction of woody biomass: kinetic modeling using pattern search method. Energy. 2020;201:117648. doi: 10.1016/j.energy.2020.117648.
  • Pala M, Kantarli IC, Buyukisik HB, et al. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Bioresour Technol. 2014;161:255–262. doi: 10.1016/j.biortech.2014.03.052.
  • Soria-Verdugo A, Cano-Pleite E, Panahi A, et al. Kinetics mechanism of inert and oxidative torrefaction of biomass. Energy Convers Manage. 2022;267:115892. doi: 10.1016/j.enconman.2022.115892.
  • Cao X, Luo Q, Song F, et al. Effects of oxidative torrefaction on the physicochemical properties and pyrolysis products of hemicellulose in bamboo processing residues. Ind Crops Prod. 2023;191:115986. doi: 10.1016/j.indcrop.2022.115986.
  • Chen D, Chen F, Cen K, et al. Upgrading rice husk via oxidative torrefaction: characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction. Fuel. 2020;275:117936. doi: 10.1016/j.fuel.2020.117936.
  • Thengane SK, Burek J, Kung KS, et al. Life cycle assessment of rice husk torrefaction and prospects for decentralized facilities at rice mills. J Clean Prod. 2020;275:123177. doi: 10.1016/j.jclepro.2020.123177.
  • Chen WH, Lu KM, Liu SH, et al. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. Bioresour Technol. 2013;146:152–160. doi: 10.1016/j.biortech.2013.07.064.
  • Zhang C, Wang M, Chen WH, et al. A comparison of conventional and oxidative torrefaction of microalga nannochloropsis oceanica through energy efficiency analysis and life cycle assessment. J Clean Prod. 2022;369:133236. doi: 10.1016/j.jclepro.2022.133236.
  • Trubetskaya A, Surup G, Shapiro A, et al. Modeling the influence of potassium content and heating rate on biomass pyrolysis. Appl Energy. 2017;194:199–211. doi: 10.1016/j.apenergy.2017.03.009.
  • Chen WH, Du JT, Lee KT, et al. Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction. Chemosphere. 2021;275:129999. doi: 10.1016/j.chemosphere.2021.129999.
  • Zhang C, Li F, Ho SH, et al. Oxidative torrefaction of microalga nannochloropsis oceanica activated by potassium carbonate for solid biofuel production. Environ Res. 2022;212(Pt C):113389. doi: 10.1016/j.envres.2022.113389.
  • Macedo LA, Silveira EA, Rousset P, et al. Synergistic effect of biomass potassium content and oxidative atmosphere: impact on torrefaction severity and released condensables. Energy. 2022;254:124472. doi: 10.1016/j.energy.2022.124472.
  • Wang MJ, Huang YF, Chiueh PT, et al. Microwave-induced torrefaction of rice husk and sugarcane residues. Energy. 2012;37(1):177–184. doi: 10.1016/j.energy.2011.11.053.
  • Salema AA, Ani FN. Microwave induced pyrolysis of oil palm biomass. Bioresour Technol. 2011;102(3):3388–3395. doi: 10.1016/j.biortech.2010.09.115.
  • Mohd Fuad MAH, Hasan MF, Ani FN. Microwave torrefaction for viable fuel production: a review on theory, affecting factors, potential and challenges. Fuel. 2019;253:512–526. doi: 10.1016/j.fuel.2019.04.151.
  • Zhang C, Chen WH, Ho SH. Economic feasibility analysis and environmental impact assessment for the comparison of conventional and microwave torrefaction of spent coffee grounds. Biomass Bioenergy. 2023;168:106652. doi: 10.1016/j.biombioe.2022.106652.
  • Natarajan P, Suriapparao DV, Vinu R. Microwave torrefaction of prosopis juliflora: Experimental and modeling study. Fuel Process Technol. 2018;172:86–96. doi: 10.1016/j.fuproc.2017.12.007.
  • Robinson J, Kingman S, Irvine D, et al. Understanding microwave heating effects in single mode type cavities - theory and experiment. Phys Chem Chem Phys. 2010;12(18):4750–4758. doi: 10.1039/b922797k.
  • Arpia AA, Chen WH, Lam SS, et al. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: a comprehensive review. Chem Eng J. 2021;403:126233. doi: 10.1016/j.cej.2020.126233.
  • Chen WH, Arpia AA, Chang JS, et al. Catalytic microwave torrefaction of microalga chlorella vulgaris FSP-E with magnesium oxide optimized via taguchi approach: a thermo-energetic analysis. Chemosphere. 2022;290:133374. doi: 10.1016/j.chemosphere.2021.133374.
  • Amer M, Nour M, Ahmed M, et al. The effect of microwave drying pretreatment on dry torrefaction of agricultural biomasses. Bioresour Technol. 2019;286:121400. doi: 10.1016/j.biortech.2019.121400.
  • Intani K, Latif S, Kabir AKMR, et al. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresour Technol. 2016;218:541–551. doi: 10.1016/j.biortech.2016.06.114.
  • Zhang C, Ho SH, Chen WH, et al. Simultaneous implementation of sludge dewatering and solid biofuel production by microwave torrefaction. Environ Res. 2021;195:110775. doi: 10.1016/j.envres.2021.110775.
  • Yan B, Jiao L, Li J, et al. Investigation on microwave torrefaction: parametric influence, TG-MS-FTIR analysis, and gasification performance. Energy. 2021;220:119794. doi: 10.1016/j.energy.2021.119794.
  • Arpia AA, Chen WH, Ubando AT, et al. Catalytic microwave-assisted torrefaction of sugarcane bagasse with calcium oxide optimized via taguchi approach: product characterization and energy analysis. Fuel. 2021;305:121543. doi: 10.1016/j.fuel.2021.121543.
  • Aniza R, Chen WH, Yang FC, et al. Integrating taguchi method and artificial neural network for predicting and maximizing biofuel production via torrefaction and pyrolysis. Bioresour Technol. 2022;343:126140. doi: 10.1016/j.biortech.2021.126140.
  • Zhang L, Wang Z, Ma J, et al. Analysis of functionality distribution and microstructural characteristics of upgraded rice husk after undergoing non-oxidative and oxidative torrefaction. Fuel. 2022;310:122477. doi: 10.1016/j.fuel.2021.122477.
  • Brachi P, Chirone R, Miccio M, et al. Fluidized bed torrefaction of biomass pellets: a comparison between oxidative and inert atmosphere. Powder Technol. 2019;357:97–107. doi: 10.1016/j.powtec.2019.08.058.
  • Riaz S, Oluwoye I, Al-Abdeli YM. Oxidative torrefaction of densified woody biomass: performance, combustion kinetics and thermodynamics. Renew Energy. 2022;199:908–918. doi: 10.1016/j.renene.2022.09.023.
  • Agu OS, Tabil LG, Mupondwa E, et al. Impact of biochar addition in microwave torrefaction of camelina straw and switchgrass for biofuel production. Fuels. 2022;3(4):588–606. doi: 10.3390/fuels3040036.
  • Sarker TR, Azargohar R, Dalai AK, et al. Enhancement of fuel and physicochemical properties of canola residues via microwave torrefaction. Energy Rep. 2021;7:6338–6353. doi: 10.1016/j.egyr.2021.09.068.
  • Valdez E, Tabil LG, Mupondwa E, et al. Microwave torrefaction of oat hull: Effect of temperature and residence time. Energies (Basel). 2021;14(14):4298. doi: 10.3390/en14144298.
  • Yek PNY, Kong SH, Law MC, et al. Microwave torrefaction of empty fruit bunch pellet: simulation and validation of electric field and temperature distribution. J Bioresour Bioprod. 2022;7(4):270–277. doi: 10.1016/j.jobab.2022.09.002.
  • Ibarra-Gonzalez P, Rong B-G. A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes. Chin J Chem Eng. 2019;27(7):1523–1535. doi: 10.1016/j.cjche.2018.09.018.
  • Ong HC, Chen W-H, Farooq A, et al. Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renewable Sustainable Energy Rev. 2019;113:109266. doi: 10.1016/j.rser.2019.109266.
  • Hu X, Gholizadeh M. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage. J Energy Chem. 2019;39:109–143. doi: 10.1016/j.jechem.2019.01.024.
  • Chen WH, Lin BJ, Huang MY, et al. Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol. 2015;184:314–327. doi: 10.1016/j.biortech.2014.11.050.
  • Chen X, Che Q, Li S, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Process Technol. 2019;196:106180. doi: 10.1016/j.fuproc.2019.106180.
  • Chaihad N, Karnjanakom S, Abudula A, et al. Zeolite-based cracking catalysts for bio-oil upgrading: a critical review. Resour Chem Mater. 2022;1(2):167–183. doi: 10.1016/j.recm.2022.03.002.
  • Li P, Shi X, Jiang L, et al. Synergistic enhancement of bio-oil quality through hydrochloric or acetic acid-washing pretreatment and catalytic fast pyrolysis of biomass. Ind Crops Prod. 2022;187:115474. doi: 10.1016/j.indcrop.2022.115474.
  • Chen D, Gao D, Huang S, et al. Influence of acid-washed pretreatment on the pyrolysis of corn straw: a study on characteristics, kinetics and bio-oil composition. J Anal Appl Pyrolysis. 2021;155:105027. doi: 10.1016/j.jaap.2021.105027.
  • Liu S, He Z, Dong Q, et al. Comparative assessment of water and organic acid washing pretreatment for nitrogen-rich pyrolysis: characteristics and distribution of bio-oil and biochar. Biomass Bioenergy. 2022;161:106480. doi: 10.1016/j.biombioe.2022.106480.
  • Wang W, Lemaire R, Bensakhria A, et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J Anal Appl Pyrolysis. 2022;163:105479. doi: 10.1016/j.jaap.2022.105479.
  • Khan SR, Zeeshan M, Masood A. Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor. Waste Manage. 2020;106:21–31. doi: 10.1016/j.wasman.2020.03.010.
  • Zhou S, Xue Y, Cai J, et al. An understanding for improved biomass pyrolysis: toward a systematic comparison of different acid pretreatments. Chem Eng J. 2021;411:128513. doi: 10.1016/j.cej.2021.128513.
  • Persson H, Yang W. Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel. 2019;252:200–209. doi: 10.1016/j.fuel.2019.04.087.
  • Pagano M, Hernando H, Cueto J, et al. Insights on the acetic acid pretreatment of wheat straw: changes induced in the biomass properties and benefits for the bio-oil production by pyrolysis. Chem Eng J. 2023;454:140206. doi: 10.1016/j.cej.2022.140206.
  • Chen D, Zhuang X, Gan Z, et al. Co-pyrolysis of light bio-oil leached bamboo and heavy bio-oil: Effects of mass ratio, pyrolysis temperature, and residence time on the biochar. Chem Eng J. 2022;437:135253. doi: 10.1016/j.cej.2022.135253.
  • Cen K, Zhuang X, Gan Z, et al. Biomass pyrolysis polygeneration with bio-oil recycling: co-pyrolysis of heavy bio-oil and pine wood leached with light bio-oil for product upgradation. Fuel. 2023;335:127057. doi: 10.1016/j.fuel.2022.127057.
  • Valizadeh S, Oh D, Jae J, et al. Effect of torrefaction and fractional condensation on the quality of bio-oil from biomass pyrolysis for fuel applications. Fuel. 2022;312:122959. doi: 10.1016/j.fuel.2021.122959.
  • Xu J, Brodu N, Abdelouahed L, et al. Investigation of the combination of fractional condensation and water extraction for improving the storage stability of pyrolysis bio-oil. Fuel. 2022;314:123019. doi: 10.1016/j.fuel.2021.123019.
  • Chai M, He Y, Sun C, Liu R. Effect of fractional condensers on characteristics, compounds distribution and phenols selection of bio-oil from pine sawdust fast pyrolysis. J Energy Inst. 93(2), 811–821 (2020). doi: 10.1016/j.joei.2019.05.001.
  • Suriapparao DV, Reddy BR, Rao CS, et al. Prosopis juliflora valorization via microwave-assisted pyrolysis: optimization of reaction parameters using machine learning analysis. J Anal Appl Pyrolysis. 2023;169:105811. doi: 10.1016/j.jaap.2022.105811.
  • Allende S, Brodie G, Jacob MV. Energy recovery from sugarcane bagasse under varying microwave-assisted pyrolysis conditions. Bioresour Technol Rep. 2022;20:101283. doi: 10.1016/j.biteb.2022.101283.
  • Chen C, Fan D, Zhao J, et al. Study on microwave-assisted co-pyrolysis and bio-oil of chlorella vulgaris with high-density polyethylene under activated carbon. Energy. 2022;247:123508. doi: 10.1016/j.energy.2022.123508.
  • Chen C, Fan D, Ling H, et al. Microwave catalytic co-pyrolysis of chlorella vulgaris and high density polyethylene over activated carbon supported monometallic: characteristics and bio-oil analysis. Bioresour Technol. 2022;363:127881. doi: 10.1016/j.biortech.2022.127881.
  • Hatefirad P, Hosseini M, Tavasoli A. Effect of Fe/Cu catalysts supported on zeolite/active carbon hybrid on bio-oil quality derived from catalytic pyrolysis of granular bacteria biomass. Fuel. 2022;312:122870. doi: 10.1016/j.fuel.2021.122870.
  • Luo W, Dong H, Wang T, et al. Co-pyrolysis of Chinese herb residue and polypropylene over Ni, Fe, Co and Cu/AC: co-production and formation mechanism of carbon nanomaterials, liquid oil and pyrolysis gas. Energy. 2022;244:122634. doi: 10.1016/j.energy.2021.122634.
  • Pang Y, Wu Y, Chen Y, et al. Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine. Renew Energy. 2020;162:134–143. doi: 10.1016/j.renene.2020.07.125.
  • Sarkar JK, Wang Q. Different pyrolysis process conditions of South Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies. 2020;13(8):1970. doi: 10.3390/en13081970.
  • Wang J, Zhang S, Chen M, et al. Fractional condensation of pyrolysis oil from fast pyrolysis of food waste digestate for enrichment of high value-added nitrogen-containing components. J Anal Appl Pyrolysis. 2022;166:105609. doi: 10.1016/j.jaap.2022.105609.
  • Zhou N, Zhou J, Dai L, et al. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresour Technol. 2020;314:123756. doi: 10.1016/j.biortech.2020.123756.
  • Li H, Li J, Fan X, et al. Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation. Fuel. 2019;239:219–229. doi: 10.1016/j.fuel.2018.10.139.
  • Zhou N, Dai L, Lv Y, et al. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chem Eng J. 2021;418:129412. doi: 10.1016/j.cej.2021.129412.
  • Xu D, Lin J, Ma R, et al. Microwave pyrolysis of biomass for low-oxygen bio-oil: mechanisms of CO2-assisted in-situ deoxygenation. Renewable Energy. 2022;184:124–133. doi: 10.1016/j.renene.2021.11.069.
  • Metawea R, Zewail T, El-Ashtoukhy ES, et al. Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles. Energy. 2018;158:111–120. doi: 10.1016/j.energy.2018.06.007.
  • Juan JC, Kartika DA, Wu TY, et al. Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol. 2011;102(2):452–460. doi: 10.1016/j.biortech.2010.09.093.
  • Rachmadona N, Harada Y, Amoah J, et al. Integrated bioconversion process for biodiesel production utilizing waste from the palm oil industry. J Environ Chem Eng. 2022;10(3):107550. doi: 10.1016/j.jece.2022.107550.
  • Garcia R, Figueiredo F, Brandão M, et al. A meta-analysis of the life cycle greenhouse gas balances of microalgae biodiesel. Int J Life Cycle Assess. 2020;25(9):1737–1748. doi: 10.1007/s11367-020-01780-2.
  • Vasistha S, Khanra A, Clifford M, et al. Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: a review. Renewable Sustainable Energy Rev. 2021;137:110498. doi: 10.1016/j.rser.2020.110498.
  • Gautam A, Bhagat PR, Kumar S, et al. Dry route process and wet route process for algal biodiesel production: a review of techno-economical aspects. Chem Eng Res Des. 2021;174:365–385. doi: 10.1016/j.cherd.2021.08.018.
  • Muhammad G, Potchamyou Ngatcha AD, Lv Y, et al. Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network. Renewable Energy. 2022;184:753–764. doi: 10.1016/j.renene.2021.11.091.
  • Nguyen TT, Lam MK, Cheng YW, et al. Reaction kinetic and thermodynamics studies for in-situ transesterification of wet microalgae paste to biodiesel. Chem Eng Res Des. 2021;169:250–264. doi: 10.1016/j.cherd.2021.03.021.
  • Nguyen TT, Lam MK, Uemura Y, et al. High biodiesel yield from wet microalgae paste via in-situ transesterification: effect of reaction parameters towards the selectivity of fatty acid esters. Fuel. 2020;272:117718. doi: 10.1016/j.fuel.2020.117718.
  • Nazloo EK, Moheimani NR, Ennaceri H. Biodiesel production from wet microalgae: progress and challenges. Algal Res. 2022;68:102902. doi: 10.1016/j.algal.2022.102902.
  • Malekghasemi S, Kariminia HR, Plechkova NK, et al. Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass Bioenergy. 2021;150:106126. doi: 10.1016/j.biombioe.2021.106126.
  • Han FY, Komiyama M, Uemura Y, et al. One-path catalytic supercritical methanothermal production of fatty acid methyl ester fractions from wet microalgae chlorella vulgaris. Biomass Bioenergy. 2020;143:105834. doi: 10.1016/j.biombioe.2020.105834.
  • Sitepu EK, Heimann K, Raston CL, et al. Critical evaluation of process parameters for direct biodiesel production from diverse feedstock. Renewable Sustainable Energy Rev. 2020;123:109762. doi: 10.1016/j.rser.2020.109762.
  • Kam YL, Agutaya JKCN, Quitain AT, et al. In-situ transesterification of microalgae using carbon-based catalyst under pulsed microwave irradiation. Biomass Bioenergy. 2023;168:106662. doi: 10.1016/j.biombioe.2022.106662.
  • Umamaheswari J, Kavitha MS, Shanthakumar S. Outdoor cultivation of chlorella pyrenoidosa in paddy-soaked wastewater and a feasibility study on biodiesel production from wet algal biomass through in-situ transesterification. Biomass Bioenergy. 2020;143:105853. doi: 10.1016/j.biombioe.2020.105853.
  • Felix C, Ubando A, Madrazo C, et al. Non-catalytic in-situ (trans)esterification of lipids in wet microalgae chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters. Appl Energy. 2019;248:526–537. doi: 10.1016/j.apenergy.2019.04.149.
  • Singh N, Kumar K, Goyal A, et al. Ultrasound-assisted biodiesel synthesis by in–situ transesterification of microalgal biomass: optimization and kinetic analysis. Algal Res. 2022;61:102582. doi: 10.1016/j.algal.2021.102582.
  • Son Le H, Chen WH, Forruque Ahmed S, et al. Hydrothermal carbonization of food waste as sustainable energy conversion path. Bioresour Technol. 2022;363:127958. doi: 10.1016/j.biortech.2022.127958.
  • Mannarino G, Sarrion A, Diaz E, et al. Improved energy recovery from food waste through hydrothermal carbonization and anaerobic digestion. Waste Manage. 2022;142:9–18. doi: 10.1016/j.wasman.2022.02.003.
  • Liu Z, Wang Z, Chen H, et al. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: a critical review. Environ Pollut. 2021;268(Pt B):115910. doi: 10.1016/j.envpol.2020.115910.
  • Kumar A, Saini K, Bhaskar T. Hydochar and biochar: production, physicochemical properties and techno-economic analysis. Bioresour Technol. 2020;310:123442. doi: 10.1016/j.biortech.2020.123442.
  • Sarrion A, Medina-Martos E, Iribarren D, et al. Life cycle assessment of a novel strategy based on hydrothermal carbonization for nutrient and energy recovery from food waste. Sci Total Environ. 2023;878:163104. doi: 10.1016/j.scitotenv.2023.163104.
  • Gupta D, Mahajani SM, Garg A. Investigation on hydrochar and macromolecules recovery opportunities from food waste after hydrothermal carbonization. Sci Total Environ. 2020;749:142294. doi: 10.1016/j.scitotenv.2020.142294.
  • Tran TH, Le HH, Pham TH, et al. Comparative study on methylene blue adsorption behavior of coffee husk-derived activated carbon materials prepared using hydrothermal and soaking methods. J Environ Chem Eng. 2021;9(4):105362. doi: 10.1016/j.jece.2021.105362.
  • Cheng C, Guo Q, Ding L, et al. Upgradation of coconut waste shell to value-added hydrochar via hydrothermal carbonization: parametric optimization using response surface methodology. Appl Energy. 2022;327:120136. doi: 10.1016/j.apenergy.2022.120136.
  • Heidari M, Salaudeen S, Arku P, et al. Development of a mathematical model for hydrothermal carbonization of biomass: comparison of experimental measurements with model predictions. Energy. 2021;214:119020. doi: 10.1016/j.energy.2020.119020.
  • Xu Z, Qi R, Xiong M, et al. Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: mechanisms and combustion behaviors. Bioresour Technol. 2021;321:124450. doi: 10.1016/j.biortech.2020.124450.
  • Belete YZ, Mau V, Yahav Spitzer R, et al. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients. Bioresour Technol. 2021;333:125164. doi: 10.1016/j.biortech.2021.125164.
  • Beims RF, Hu Y, Shui H, et al. Hydrothermal liquefaction of biomass to fuels and value-added chemicals: products applications and challenges to develop large-scale operations. Biomass Bioenergy. 2020;135:105510. doi: 10.1016/j.biombioe.2020.105510.
  • Basar IA, Liu H, Carrere H, et al. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green Chem. 2021;23(4):1404–1446. doi: 10.1039/D0GC04092D.
  • Duangkaew N, Pattaraprakorn W, Grisdanurak N, et al. Utilization of black-liquor by hydrothermal liquefaction. In: Materials Today: Proceedings; 2022; doi: 10.1016/j.matpr.2022.11.227.
  • Seshasayee MS, Savage PE. Synergistic interactions during hydrothermal liquefaction of plastics and biomolecules. Chem Eng J. 2021;417:129268. doi: 10.1016/j.cej.2021.129268.
  • Yang J, Sophia)He Q, Yang L. A review on hydrothermal co-liquefaction of biomass. Appl Energy. 2019;250(January):926–945. doi: 10.1016/j.apenergy.2019.05.033.
  • Cao B, Hu S, Zhu K, et al. Response surface optimization of product yields and biofuel quality during fast hydrothermal liquefaction of a highly CO2-tolerant microalgae. Sci Total Environ. 2023;860:160541. doi: 10.1016/j.scitotenv.2022.160541.
  • Ciuffi B, Loppi M, Rizzo AM, et al. Towards a better understanding of the HTL process of lignin-rich feedstock. Sci Rep. 2021;11(1):15504. doi: 10.1038/s41598-021-94977-w.
  • Gundupalli MP, Bhattacharyya D. Hydrothermal liquefaction of residues of cocos nucifera (coir and pith) using subcritical water: process optimization and product characterization. Energy. 2021;236:121466. doi: 10.1016/j.energy.2021.121466.
  • Audu M, Wang H, Arellano D, et al. Ash-pretreatment and hydrothermal liquefaction of filamentous algae grown on dairy wastewater. Algal Res. 2021;57:102282. doi: 10.1016/j.algal.2021.102282.
  • Mahima J, Sundaresh RK, Gopinath KP, et al. Effect of algae (scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): biochar and aqueous phase utilization studies. Sci Total Environ. 2021;778:146262. doi: 10.1016/j.scitotenv.2021.146262.
  • Zhang B, He Z, Xu Z. Effect of organic aqueous phase recycling on hydrothermal liquefaction of C-Phycocyanin. Biomass Bioenergy. 2022;165:106573. doi: 10.1016/j.biombioe.2022.106573.
  • Leng S, Jiao H, Liu T, et al. Co-liquefaction of chlorella and soybean straw for production of bio-crude: Effects of reusing aqueous phase as the reaction medium. Sci Total Environ. 2022;820:153348. doi: 10.1016/j.scitotenv.2022.153348.
  • Carpio RB, Avendaño CIL, Basbas CA, et al. Assessing the effect of K2CO3 and aqueous phase recycling on hydrothermal liquefaction of corn stover. Bioresour Technol Rep. 2022;18:101093. doi: 10.1016/j.biteb.2022.101093.
  • Zulkornain MF, Shamsuddin AH, Normanbhay S, et al. Optimization of rice husk hydrochar via microwave-assisted hydrothermal carbonization: fuel properties and combustion kinetics. Bioresour Technol Rep. 2022;17:100888. doi: 10.1016/j.biteb.2021.100888.
  • Castro J de S, Assemany PP, Carneiro AdO, et al. Hydrothermal carbonization of microalgae biomass produced in agro-industrial effluent: products, characterization and applications. Sci Total Environ. 2021;768:144480. doi: 10.1016/j.scitotenv.2020.144480.
  • Leng S, Li W, Han C, et al. Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: a comparison study. Bioresour Technol. 2020;298:122502. doi: 10.1016/j.biortech.2019.122502.
  • Deng C, Lin R, Kang X, et al. Co-production of hydrochar, levulinic acid and value-added chemicals by microwave-assisted hydrothermal carbonization of seaweed. Chem Eng J. 2022;441:135915. doi: 10.1016/j.cej.2022.135915.
  • Yang J, He Q (, Niu H, et al. Microwave-assisted hydrothermal liquefaction of biomass model components and comparison with conventional heating. Fuel. 2020;277:118202. doi: 10.1016/j.fuel.2020.118202.
  • Mukundan S, Xuan J, Dann SE, et al. Highly active and magnetically recoverable heterogeneous catalyst for hydrothermal liquefaction of biomass into high quality bio-oil. Bioresour Technol. 2023;369:128479. doi: 10.1016/j.biortech.2022.128479.
  • Yuan C, Zhao S, Ni J, et al. Integrated route of fast hydrothermal liquefaction of microalgae and sludge by recycling the waste aqueous phase for microalgal growth. Fuel. 2023;334:126488. doi: 10.1016/j.fuel.2022.126488.
  • Gao N, Milandile MH, Quan C, et al. Critical assessment of plasma tar reforming during biomass gasification: a review on advancement in plasma technology. J Hazard Mater. 2022;421:126764. doi: 10.1016/j.jhazmat.2021.126764.
  • Chin BLF, Gorin A, Chua HB, et al. Experimental investigation on tar produced from palm shells derived syngas using zeolite HZSM-5 catalyst. J Inst Energy. 2016;89(4):713–724. doi: 10.1016/j.joei.2015.04.005.
  • Lotfi S, Ma W, Austin K, et al. A wet packed-bed scrubber for removing tar from biomass producer gas. Fuel Process Technol. 2019;193:197–203. doi: 10.1016/j.fuproc.2019.05.024.
  • Chen HJ, Wu J, Wang XY, et al. Simulated biomass tar removal mechanism and performance by a quench coupled with ABsorption technology. Fuel Process Technol. 2016;146:90–98. doi: 10.1016/j.fuproc.2016.02.010.
  • Liu L, Zhang Z, Das S, et al. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review. Appl Catal B. 2019;250:250–272. doi: 10.1016/j.apcatb.2019.03.039.
  • Abdoulmoumine N, Adhikari S, Kulkarni A, et al. A review on biomass gasification syngas cleanup. Appl Energy. 2015;155:294–307. doi: 10.1016/j.apenergy.2015.05.095.
  • Ren J, Cao JP, Zhao XY, et al. Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable Sustainable Energy Rev. 2019;116:109426. doi: 10.1016/j.rser.2019.109426.
  • Han J, Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renewable Sustainable Energy Rev. 2008;12(2):397–416. doi: 10.1016/j.rser.2006.07.015.
  • Okati A, Reza Khani M, Shokri B, et al. Parametric studies over a plasma co-gasification process of biomass and coal through a restricted model in aspen plus. Fuel. 2023;331:125952. doi: 10.1016/j.fuel.2022.125952.
  • Mazzoni L, Janajreh I, Elagroudy S, et al. Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge. Energy. 2020;196:117001. doi: 10.1016/j.energy.2020.117001.
  • Erdogan AA, Yilmazoglu MZ. Plasma gasification of the medical waste. Int J Hydrogen Energy. 2021;46(57):29108–29125. doi: 10.1016/j.ijhydene.2020.12.069.
  • Panepinto D, Tedesco V, Brizio E, et al. Environmental performances and energy efficiency for MSW gasification treatment. Waste Biomass Valorization. 2015;6(1):123–135. doi: 10.1007/s12649-014-9322-7.
  • Ismail TM, Monteiro E, Ramos A, et al. An Eulerian model for Forest residues gasification in a plasma gasifier. Energy. 2019;182:1069–1083. doi: 10.1016/j.energy.2019.06.070.
  • Willis KP, Osada MS, Willerton KL. Plasma gasification: lessons learned at Eco-Valley WTE facility. In: 18th Annual North American Waste-to-Energy Conference, Orlando, FL; 2010. doi: 10.1115/NAWTEC18-3515.
  • Qi H, Xu H, Zhang J, et al. Thermodynamic and techno-economic analyses of hydrogen production from different algae biomass by plasma gasification. Int J Hydrogen Energy. 2023. doi: 10.1016/j.ijhydene.2023.06.038.
  • Li H, Sun C, Zhang Y, et al. Performance investigation of the gasification for the kitchen waste powder in a direct current plasma reactor. J Inst Energy. 2022;100:170–176. doi: 10.1016/j.joei.2021.11.006.
  • Chu C, Wang P, Boré A, et al. Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: gasification characteristics and chlorine release behavior. Energy. 2023;262:125385. doi: 10.1016/j.energy.2022.125385.
  • Vecten S, Wilkinson M, Bimbo N, et al. Hydrogen-rich syngas production from biomass in a steam microwave-induced plasma gasification reactor. Bioresour Technol. 2021;337:125324. doi: 10.1016/j.biortech.2021.125324.
  • Tamošiūnas A, Gimžauskaitė D, Aikas M, et al. Waste glycerol gasification to syngas in pure DC water vapor arc plasma. Int J Hydrogen Energy. 2022;47(24):12219–12230. doi: 10.1016/j.ijhydene.2021.06.203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.