113
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Sweet sorghum and bagasse: a comprehensive review of feedstock traits, conversion processes, and economic viability for bioethanol and biogas production

Pages 575-585 | Received 23 May 2023, Accepted 18 Sep 2023, Published online: 09 Oct 2023

References

  • Rather RA, Wani AW, Mumtaz S, et al. Bioenergy: a foundation to environmental sustainability in a changing global climate scenario. J King Saud Univ-Sci. 2022;34(1):101734. doi: 10.1016/j.jksus.2021.101734.
  • Chen W-H, Lo H-J, Yu K-L, et al. Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy. Environ Pollut. 2021;285:117196. doi: 10.1016/j.envpol.2021.117196.
  • Bušić A, Marđetko N, Kundas S, et al. Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol. 2018;56(3):289–311. doi: 10.17113/ftb.56.03.18.5546.
  • Ray RC, Uppuluri KB, Trilokesh C, Lareo C. Sweet sorghum for bioethanol production: scope, technology, and economics. In: Ray RC, Ramachandran S, editor. Bioethanol production from food crops. Academic Press; 2019. p. 81–100. doi: 10.1016/B978-0-12-813766-6.00005-9.
  • Bharathiraja B, Sudharsanaa T, Bharghavi A, et al. Biohydrogen and biogas – an overview on feedstocks and enhancement process. Fuel. 2016;185:810–828. doi: 10.1016/j.fuel.2016.08.030.
  • Barcelos CA, Maeda RN, Santa Anna LMM, et al. Sweet sorghum as a whole-crop feedstock for ethanol production. Biomass Bioenergy. 2016;94:46–56. doi: 10.1016/j.biombioe.2016.08.012.
  • Zegada-Lizarazu W, Monti A. Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass Bioenergy. 2012;40:1–12. doi: 10.1016/j.biombioe.2012.01.048.
  • Gyalai-Korpos M, Feczak J, Reczey K. Sweet sorghum juice and bagasse as a possible feedstock for bioethanol production. Hungarian J Indus Chem. 2008;36. doi: 10.1515/177.
  • Abanades S, Abbaspour H, Ahmadi A, et al. A critical review of biogas production and usage with legislations framework across the globe. Int J Environ Sci Technol. 2021;19:3377–3400.
  • Alokika  , Anu  , Kumar A, Kumar V, Singh B. Cellulosic and hemicellulosic fractions of sugarcane bagasse: potential, challenges and future perspective. Int J Biol Macromol. 2021;169:564–582. doi: 10.1016/j.ijbiomac.2020.12.175.
  • Leontopoulos S, Arabatzis G. The contribution of energy crops to biomass production. In: Kyriakopoulos GL, editor. Low carbon energy technologies in sustainable energy systems. Academic Press; 2021; p. 47–113.
  • Bhadha JH, Xu N, Khatiwada R, et al. Bagasse: a potential organic soil amendment used in sugarcane production. EDIS. 2020;2020(5):5. doi: 10.32473/edis-ss690-2020.
  • Dotaniya M, Sharma MM, Kumar K, Singh APP. Impact of crop residue management on nutrient balance in rice-wheat cropping system in an aquic hapludoll. J Rural Agric Res. 2013;13(1):122–123.
  • Umakanth A, Kumar AA, Vermerris W, Tonapi VA. Sweet Sorghum for Biofuel Industry. In: Aruna C, Visarada KB, Bhat BV, Tonapi VA, editors. Breeding sorghum for diverse end uses. Woodhead Publishing Series in Food Science, Technology and Nutrition; 2019; p. 255–270.
  • Melati RB, Schmatz AA, Pagnocca F, Contiero J, Brienzo M. Sugarcane bagasse: production, composition, properties, and feedstock potential. In: Murphy R, editor. Sugarcane: production systems, uses and Economic importance. Nova Science Publishers, Inc.; 2017: p. 1–38.
  • Zheng Y, Zhao J, Xu F, et al. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci. 2014;42:35–53. doi: 10.1016/j.pecs.2014.01.001.
  • Wu Z, Peng K, Zhang Y, et al. Lignocellulose dissociation with biological pretreatment towards the biochemical platform: a review. Mater Today Bio. 2022;16:100445. doi: 10.1016/j.mtbio.2022.100445.
  • Aftab MN, Iqbal I, Riaz F, Karadag A, Tabatabaei M. Different pretreatment methods of lignocellulosic biomass for use in biofuel production. In: Abomohra AE, editor. Biomass for bioenergy-recent trends and future challenges. IntechOpen; 2019; p. 15–30.
  • Chen J, Zhang W, Zhang H, et al. Screw extrude steam explosion: a promising pretreatment of corn stover to enhance enzymatic hydrolysis. Bioresour Technol. 2014;161:230–235. doi: 10.1016/j.biortech.2014.02.043.
  • Qu T, Zhang X, Gu X, et al. Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. ACS Sustain Chem Eng. 2017;5(9):7733–7742. doi: 10.1021/acssuschemeng.7b01186.
  • Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4(1):7. doi: 10.1186/s40643-017-0137-9.
  • Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101(13):4851–4861. doi: 10.1016/j.biortech.2009.11.093.
  • Sathitsuksanoh N, Holtman KM, Yelle DJ, et al. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chem. 2014;16(3):1236–1247. doi: 10.1039/C3GC42295J.
  • Yu H, Zhang X, Song L, et al. Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. J Biosci Bioeng. 2010;110(6):660–664. doi: 10.1016/j.jbiosc.2010.08.002.
  • Cui T, Yuan B, Guo H, et al. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping. Biotechnol Biofuels. 2021;14(1):162. doi: 10.1186/s13068-021-02011-y.
  • Xu G-C, Ding J-C, Han R-Z, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol. 2016;203:364–369. doi: 10.1016/j.biortech.2015.11.002.
  • da Silva Fernandes F, de Souza ÉS, Carneiro LM, et al. Current ethanol production requirements for the yeast Saccharomyces cerevisiae. Int J Microbiol. 2022;2022:7878830. doi: 10.1155/2022/7878830.
  • Luo Z, Wang L, Shahbazi A. Optimization of ethanol production from sweet sorghum (Sorghum bicolor) juice using response surface methodology. Biomass Bioenergy. 2014;67:53–59. doi: 10.1016/j.biombioe.2014.04.003.
  • Wanderley MCdA, Martín C, Rocha GJdM, et al. Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresour Technol. 2013;128:448–453. doi: 10.1016/j.biortech.2012.10.131.
  • Maicas S. The role of yeasts in fermentation processes. Microorganisms. 2020;8:1142. doi: 10.3390/microorganisms8081142.
  • Papapetridis I, van Dijk M, Dobbe APA, et al. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Fact. 2016;15(1):67. pdoi: 10.1186/s12934-016-0465-z.
  • Xiao M-Z, Sun Q, Hong S, et al. Sweet sorghum for phytoremediation and bioethanol production. J Leather Sci Eng. 2021;3(1):1–23. doi: 10.1186/s42825-021-00074-z.
  • Niglio S, Marzocchella A, Rehmann L. Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation. Heliyon. 2019;5(3):e01401. doi: 10.1016/j.heliyon.2019.e01401.
  • Martínez-Gutiérrez E. Biogas production from different lignocellulosic biomass sources: advances and perspectives. 3 Biotech. 2018;8(5):233. doi: 10.1007/s13205-018-1257-4.
  • Cottet C, Ramirez-Tapias YA, Delgado JF, et al. Biobased materials from microbial biomass and its derivatives. Materials. 2020;13(6):1263. doi: 10.3390/ma13061263.
  • Toor M, Kumar SS, Malyan SK, et al. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere. 2020;242:125080. doi: 10.1016/j.chemosphere.2019.125080.
  • Nuanpeng S, Thanonkeo S, Klanrit P, et al. Optimization conditions for ethanol production from sweet sorghum juice by thermotolerant yeast Saccharomyces cerevisiae: using a statistical experimental design. Fermentation. 2023;9(5):450. doi: 10.3390/fermentation9050450.
  • Sharma R, Garg P, Kumar P, et al. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation. 2020;6(4):106. doi: 10.3390/fermentation6040106.
  • Appiah-Nkansah NB, Zhang K, Rooney W, et al. Ethanol production from mixtures of sweet sorghum juice and sorghum starch using very high gravity fermentation with urea supplementation. Ind Crops Prod. 2018;111:247–253. doi: 10.1016/j.indcrop.2017.10.028.
  • Ishihara M, Toyama S, Yonaha K. Biogas production from methane fermentation of sugarcane bagasse. Sci Bull Coll Agric Univ Ryukyus Okinawa. 1988;35:45–51.
  • Ire FS, Ezebuiro V, Ogugbue CJ. Production of bioethanol by bacterial co-culture from agro-waste-impacted soil through simultaneous saccharification and co-fermentation of steam-exploded bagasse. Bioresour Bioprocess. 2016;3(1):1–12. doi: 10.1186/s40643-016-0104-x.
  • Li J, Li S, Han B, et al. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol. Biotechnol Biofuels. 2013;6(1):174. doi: 10.1186/1754-6834-6-174.
  • Branco RH, Serafim LS, Xavier AM. Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock. Fermentation. 2018;5(1):4. doi: 10.3390/fermentation5010004.
  • Singh A, Singhania RR, Soam S, et al. Production of bioethanol from food waste: status and perspectives. Bioresour Technol. 2022;360:127651. doi: 10.1016/j.biortech.2022.127651.
  • Li Y, Alaimo CP, Kim M, et al. Composition and toxicity of biogas produced from different feedstocks in California. Environ Sci Technol. 2019;53(19):11569–11579. doi: 10.1021/acs.est.9b03003.
  • Clauser NM, González G, Mendieta CM, et al. Biomass waste as sustainable raw material for energy and fuels. Sustainability. 2021;13(2):794. doi: 10.3390/su13020794.
  • Reijnders L. Life cycle assessment of greenhouse gas emissions. In: Chen WY, Suzuki T, Lackner M, editors. Handbook of climate change mitigation and adaptation. New york: Springer, 2012. p. 13–41.
  • Wang M, Chen Y, Xia X, et al. Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis. Bioresour Technol. 2014;163:74–81. doi: 10.1016/j.biortech.2014.04.014.
  • Muscat A, de Olde EM, de Boer IJM, et al. The battle for biomass: a systematic review of food-feed-fuel competition. Global Food Secur. 2020;25:100330. doi: 10.1016/j.gfs.2019.100330.
  • GreenFacts. Liquid biofuels for transport prospects, risks and opportunities. In: GreenFacts, editor. Scientific Facts on Liquid Biofuels for Transport. Prospects, risks and opportunities. GreenFacts. 2008.
  • Benaissa S, Adouane B, Ali SM, et al. Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors. Therm Sci Eng Progr. 2022;27:101178. doi: 10.1016/j.tsep.2021.101178.
  • Aakko-Saksa PT, Lehtoranta K, Kuittinen N, et al. Reduction in greenhouse gas and other emissions from ship engines: current trends and future options. Prog Energy Combust Sci. 2023;94:101055. doi: 10.1016/j.pecs.2022.101055.
  • Nazari-Heris M, Tamaskani Esfehankalateh A, Ifaei P. Hybrid energy systems for buildings: a techno-economic-enviro systematic review. Energies. 2023;16(12):4725. doi: 10.3390/en16124725.
  • Jiang D, Hao M, Fu J, et al. Potential bioethanol production from sweet sorghum on marginal land in China. J Cleaner Prod. 2019;220:225–234. doi: 10.1016/j.jclepro.2019.01.294.
  • Morrissey MJ, Chen L, Silalertruksa W. Life cycle assessment of bioethanol and renewable gasoline production from sweet sorghum in the United States. Bioresour Technol. 2021;297:122485.
  • Shah F, Wu W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability. 2019;11(5):1485. doi: 10.3390/su11051485.
  • Pandey V, Shahapurkar K, Guluwadi S, et al. Studies on the performance of engines powered with hydrogen-enriched biogas. Energies. 2023;16(11):4349. doi: 10.3390/en16114349.
  • Dar RA, Dar EA, Kaur A, Phutela UG. Sweet sorghum-a promising alternative feedstock for biofuel production. Renew Sustain Energy Rev. 2018;82:4070–4090.
  • Bui VG, Tu Bui TM, Ong HC, et al. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy. 2022;252:124052. doi: 10.1016/j.energy.2022.124052.
  • Taylan O, Kaya D, Bakhsh AA, et al. Bioenergy life cycle assessment and management in energy generation. Energy Explor Exploit. 2018;36(1):166–181. doi: 10.1177/0144598717725871.
  • Paulsen S, Hoffstadt K, Krafft S, et al. Continuous biogas production from sugarcane as sole substrate. Energy Rep. 2020;6:153–158. doi: 10.1016/j.egyr.2019.08.035.
  • Liu W, Wu R, Wang B, et al. Comparative study on different pretreatment on enzymatic hydrolysis of corncob residues. Bioresour Technol. 2020;295:122244. doi: 10.1016/j.biortech.2019.122244.
  • Kabeyi MJB, OA, Olanrewaju. Biogas production and applications in the sustainable energy transition. Energy J. 2022;2022:1–43. doi: 10.1155/2022/8750221.
  • Cutz L, Santana D. Techno-economic analysis of integrating sweet sorghum into sugar mills: the Central American case. Biomass Bioenergy. 2014;68:195–214. doi: 10.1016/j.biombioe.2014.06.011.
  • Munagala M, Shastri Y, Nagarajan S, et al. Production of Bio-CNG from sugarcane bagasse: commercialization potential assessment in indian context. Ind Crops Prod. 2022;188:115590. doi: 10.1016/j.indcrop.2022.115590.
  • Martinez-Hernandez E, Amezcua-Allieri MA, Sadhukhan J, Anell JA. Sugarcane bagasse valorization strategies for bioethanol and energy production. In: De Oliveira A, editor. Sugarcane-technology and research. IntechOpen; 2018; p. 71–81.
  • Janke L, Leite A, Nikolausz M, et al. Biogas production from sugarcane waste: assessment on kinetic challenges for process designing. Int J Mol Sci. 2015;16(9):20685–20703. doi: 10.3390/ijms160920685.
  • Ghani HU, Mahmood A, Ullah A, et al. Life cycle environmental and economic performance analysis of bagasse-based electricity in Pakistan. Sustainability. 2020;12(24):10594. doi: 10.3390/su122410594.
  • Bennett AS, Anex RP. Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest. Bioresour Technol. 2009;100(4):1595–1607. doi: 10.1016/j.biortech.2008.09.023.
  • Daystar JS, Treasure T, Gonzalez R, et al. The NREL biochemical and thermochemical ethanol conversion processes: financial and environmental analysis comparison. BioResources. 2015;10(3):5096–5116. doi: 10.15376/biores.10.3.5096-5116.
  • Hazell P, Pachauri RK. Bioenergy and agriculture: promises and challenges. Vol. 2020. Washington (DC): IFPRI; 2006.
  • Ben-Iwo J, Manovic V, Longhurst P. Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew Sustain Energy Rev. 2016;63:172–192. doi: 10.1016/j.rser.2016.05.050.
  • Uslu A, Detz RJ, Mozaffarian H. Barriers to advanced liquid biofuels & renewable liquid fuels of non-biological origin. Deliverable. 2018;D1:1.
  • Hashemi B, Sarker S, Lamb JJ, et al. Yield improvements in anaerobic digestion of lignocellulosic feedstocks. J Cleaner Prod. 2021;288:125447. doi: 10.1016/j.jclepro.2020.125447.
  • Rochón E, Ferrari MD, Lareo C. Integrated ABE fermentation-gas stripping process for enhanced butanol production from sugarcane-sweet sorghum juices. Biomass Bioenergy. 2017;98:153–160. doi: 10.1016/j.biombioe.2017.01.011.
  • Lin H, Wang Q, Shen Q, et al. Genetic engineering of microorganisms for biodiesel production. Bioengineered. 2013;4(5):292–304. doi: 10.4161/bioe.23114.
  • Wang Z, He X, Yan L, et al. Enhancing enzymatic hydrolysis of corn stover by twin-screw extrusion pretreatment. Ind Crops Prod. 2020;143:111960. doi: 10.1016/j.indcrop.2019.111960.
  • Sidana A, Yadav SK. Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. J Cleaner Prod. 2022;335:130286. doi: 10.1016/j.jclepro.2021.130286.
  • Sharma S, Tsai M-L, Sharma V, et al. Environment friendly pretreatment approaches for the bioconversion of lignocellulosic biomass into biofuels and value-added products. Environments. 2022;10(1):6. doi: 10.3390/environments10010006.
  • Patel A, Shah AR. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. 2021;6(2):108–128. doi: 10.1016/j.jobab.2021.02.001.
  • Madhavan A, Jose AA, Binod P, et al. Synthetic biology and metabolic engineering approaches and its impact on non-conventional yeast and biofuel production. Front Energy Res. 2017;5:8. pdoi: 10.3389/fenrg.2017.00008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.