45
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Proteobacterial dominance in endophytic bacterial diversity in switchgrass growing under nitrogen range and effect on plant growth

Pages 515-525 | Received 27 May 2023, Accepted 29 Sep 2023, Published online: 19 Oct 2023

References

  • Siciliano SD, Goldie H, Germida JJ. Enzymatic activity in root exudates of Dahurian wild rye (Elymus dauricus) that degrades 2-chlorobenzoic acid. J Agric Food Chem. 1998;46(1):5–7. doi: 10.1021/jf9708195.
  • Goldemberg J. Ethanol for a sustainable energy future. Science. 2007;315(5813):808–810. doi: 10.1126/science.1137013.
  • Mendu V, Shearin T, Campbell JE, Jr, et al. Global bioenergy potential from high-lignin agricultural residue. Proc Natl Acad Sci USA. 2012;109(10):4014–4019. doi: 10.1073/pnas.1112757109.
  • Bouton J. Improvement of switchgrass as a bioenergy crop. In: Vermerris W, editor. Genetic improvement of bioenergy crops. Gainesville, FL: Springer; 2008. p. 295–308.
  • Sanderson MA, Reed RL, McLaughlin SB, et al. Switchgrass as a sustainable bioenergy crop. Bioresour Technol. 1996;56(1):83–93. doi: 10.1016/0960-8524(95)00176-X.
  • Guretzky JA, Biermacher JT, Cook BJ, et al. Switchgrass for forage and bioenergy: harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil. 2011;339(1-2):69–81. doi: 10.1007/s11104-010-0376-4.
  • Kering MK, Biermacher JT, Butler TJ, et al. Biomass yield and nutrient responses of switchgrass to phosphorus application. Bioenerg Res. 2012;5(1):71–78. doi: 10.1007/s12155-011-9174-y.
  • Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact. 2006;19(8):827–837. doi: 10.1094/MPMI-19-0827.
  • Segura A, de Wit P, Preston GM. Life of microbes that interact with plants. Microb Biotechnol. 2009;2(4):412–415. doi: 10.1111/j.1751-7915.2009.00129.x.
  • Soto MJ, Sanjuán J, Olivares J. Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology. 2006;152(Pt 11):3167–3174. doi: 10.1099/mic.0.29112-0.
  • Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. Curr Opin Plant Biol. 2011;14(4):435–443. doi: 10.1016/j.pbi.2011.04.004.
  • Schulz B, Boyle C. What are endophytes? In: Schulz B, Boyle C, Sieber TN, editors. Microbial root endophytes. Vol. 9 Soil Biology. Berlin (Germany): Springer-Verlag; 2006.
  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, et al. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43(10):895–914. doi: 10.1139/m97-131.
  • Glick B, Todorovic B, Czarny J, et al. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci. 2007;26(5-6):227–242. doi: 10.1080/07352680701572966.
  • Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV. Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek. 2002;81(1-4):373–383. doi: 10.1023/a:1020596903142.
  • Raymond J, Siefert JL, Staples CR, et al. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21(3):541–554. doi: 10.1093/molbev/msh047.
  • Etesami H, Alikhani HA, Akbari AA. Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J. 2009;6:1576–1584.
  • Zaidi A, Khan MS, Ahemad M, et al. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung. 2009;56(3):263–284. doi: 10.1556/AMicr.56.2009.3.6.
  • Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995.
  • Daniel R. The metagenomics of soil. Nat Rev Microbiol. 2005;3(6):470–478. doi: 10.1038/nrmicro1160.
  • Leveau JJ. The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. Eur J Plant Pathol. 2007;119(3):279–300. doi: 10.1007/s10658-007-9186-9.
  • Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194(16):4151–4160. doi: 10.1128/JB.00345-12.
  • Watve M, Shejval V, Sonawane C, et al. The ‘K’ selected oligophilic bacteria: a key to uncultured diversity? Curr Sci. 2000;78:1535–1542.
  • Gagne-Bourgue F, Aliferis KA, Seguin P, et al. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol. 2013;114(3):836–853. doi: 10.1111/jam.12088.
  • Gushgari-Doyle S, Schicklberger M, Li YV, et al. Plant growth promotion diversity in switchgrass-colonizing, diazotrophic endophytes. Front Microbiol. 2021;12:730440. doi: 10.3389/fmicb.2021.730440.
  • Xia Y, Greissworth E, Mucci C, et al. Characterization of culturable bacterial endophytes of switchgrass (Panicum virgatum L.) and their capacity to influence plant growth. GCB Bioenergy. 2013;5(6):674–682. doi: 10.1111/j.1757-1707.2012.01208.x.
  • Kim S, Lowman S, Hou G, et al. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnol Biofuels. 2012;5(1):37. doi: 10.1186/1754-6834-5-37.
  • Wang B, Seiler JR, Mei C. Burkholderia phytofirmans strain PsJN advanced development and altered leaf level physiology of switchgrass. Biomass Bioenerg. 2015;83:493–500. doi: 10.1016/j.biombioe.2015.10.029.
  • Bahulikar RA, Torres-Jerez I, Worley E, et al. Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tall-grass prairie of Northern Oklahoma. Appl Environ Microbiol. 2014;80(18):5636–5643. doi: 10.1128/AEM.02091-14.
  • Bahulikar RA, Chaluvadi SR, Torres-Jerez I, et al. Nitrogen fertilization reduces nitrogen fixation activity of diverse diazotrophs in switchgrass roots. Phytobiomes J. 2021;5(1):80–87. doi: 10.1094/PBIOMES-09-19-0050-FI.
  • Sadowsky MJ, Tully RE, Cregan PB, et al. Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl Environ Microbiol. 1987;53(11):2624–2630. doi: 10.1128/aem.53.11.2624-2630.1987.
  • Tong Z, Sadowsky MJ. A selective medium for the isolation and quantification of Bradyrhizobium japonicum and Bradyrhizobium elkanii strains from soils and inoculantst. Appl Environ Microbiol. 1994;60(2):581–586. doi: 10.1128/aem.60.2.581-586.1994.
  • Reinhold B, Hurek T, Fendrik I. Strain-specific chemotaxis of Azospirillum spp. J Bacteriol. 1985;162(1):190–195. doi: 10.1128/jb.162.1.190-195.1985.
  • Bashan Y, Holguin G, Lifshitz R. Isolation and characterization of plant growth-promoting rhizobacteria. Methods Mol Biol. 1993;21:331–345.
  • Edwards U, Rogall T, Blöcker H, et al. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989;17(19):7843–7853. doi: 10.1093/nar/17.19.7843.
  • Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2.
  • Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics. 2010;26(15):1899–1900. doi: 10.1093/bioinformatics/btq224.
  • Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739. doi: 10.1093/molbev/msr121.
  • Wakelin SA, Warren RA, Harvey PR, et al. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertility Soils. 2004;40(1):36–43. doi: 10.1007/s00374-004-0750-6.
  • Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol. 1991;57(2):535–538. doi: 10.1128/aem.57.2.535-538.1991.
  • Li Z, Chang S, Lin L, et al. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett Appl Microbiol. 2011;53(2):178–185. doi: 10.1111/j.1472-765X.2011.03088.x.
  • Broughton WJ, Dilworth MJ. Control of leghaemoglobin synthesis in snake beans. Biochem J. 1971;125(4):1075–1080. doi: 10.1042/bj1251075.
  • Hammer Ø, Harper DAT, Ryan PD. Past: paleontological statistics software package for education and data analysis. Palaeontol Electronica. 2001;4: 4:9.
  • Singer E, Bonnette J, Kenaley SC, et al. Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environ Microbiol Rep. 2019;11(2):185–195. doi: 10.1111/1758-2229.12727.
  • Sengupta S, Ganguli S, Singh PK. Metagenome analysis of the root endophytic microbial community of Indian rice (O. sativa L.). Genom Data. 2017;12:41–43. doi: 10.1016/j.gdata.2017.02.010.
  • Niu B, Paulson JN, Zheng X, et al. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA. 2017;114(12):E2450–E2459. doi: 10.1073/pnas.1616148114.
  • Xu J, Kloepper JW, Huang P, et al. Isolation and characterization of N2-fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake. J Basic Microbiol. 2018;58(5):459–471. doi: 10.1002/jobm.201700535.
  • Preston GM. Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci. 2004;359(1446):907–918. doi: 10.1098/rstb.2003.1384.
  • Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis. A review. Afr J Agric Res. 2014;9:265–1277.
  • Hestrin R, Lee MR, Whitaker BK, et al. The switchgrass microbiome: a review of structure, function, and taxonomic distribution. Phytobiomes J. 2021;5(1):14–28.
  • Masson-Boivin C, Giraud E, Perret X, et al. Establishing nitrogen-fixing symbiosis with legumes: how many Rhizobium recipes? Trends Microbiol. 2009;17(10):458–466. doi: 10.1016/j.tim.2009.07.004.
  • Bhattacharjee RB, Singh A, Mukhopadhyay SN. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol. 2008;80(2):199–209. doi: 10.1007/s00253-008-1567-2.
  • Saikia SP, Jain V. Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci. 2007;92:317–322.
  • Antoun H, Beauchamp CJ, Goussard N, et al. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil. 1998;204(1):57–67. doi: 10.1023/A:1004326910584.
  • Li X, Petipas RH, Antoch AA, et al. Switchgrass cropping systems affect soil carbon and nitrogen and microbial diversity and activity on marginal lands. GCB Bioenergy. 2022;14(8):918–940. doi: 10.1111/gcbb.12949.
  • Devereux R, He SH, Doyle CL, et al. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol. 1990;172(7):3609–3619. doi: 10.1128/jb.172.7.3609-3619.1990.
  • van Loon LC. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol. 2007;119(3):243–254. doi: 10.1007/s10658-007-9165-1.
  • Lopez-Bucio J, Campos-Cuevas JC, Hernandez-Calderon E, et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact. 2007;20(2):207–217. doi: 10.1094/MPMI-20-2-0207.
  • Kim H-S, Sang MK, Myung I-S, et al. Characterization of Bacillus luciferensis strain KJ2C12 from pepper root, a biocontrol agent of P. hytophthora blight of pepper. Plant Pathol. 2009;25(1):62–69. doi: 10.5423/PPJ.2009.25.1.062.
  • Martinez-Mendoza EK, Mena-Violante HG, Mendez-Inocencio C, et al. Effects of Bacillus subtilis extracts on weed seed germination of Sorghum halepense and Amaranthus hybridus. Afr J Microbiol Res. 2012;6:1887–1892.
  • van Rhijn P, Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev. 1995;59(1):124–142. doi: 10.1128/mr.59.1.124-142.1995.
  • Zahran HH. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev. 1999;63(4):968–989, table of contents. doi: 10.1128/MMBR.63.4.968-989.1999.
  • García-Fraile P, Carro L, Robledo M, et al. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One. 2012;7(5):e38122. doi: 10.1371/journal.pone.0038122.
  • Singh MK, Kushwaha C, Singh RK. Studies on endophytic colonization ability of two upland rice endophytes, Rhizobium sp. and Burkholderia sp., using green fluorescent protein reporter. Curr Microbiol. 2009;59(3):240–243. doi: 10.1007/s00284-009-9419-6.
  • Tan Z, Hurek T, Vinuesa P, et al. Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol. 2001;67(8):3655–3664. doi: 10.1128/AEM.67.8.3655-3664.2001.
  • Loiret FG, Ortega E, Kleiner D, et al. A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol. 2004;97(3):504–511. doi: 10.1111/j.1365-2672.2004.02329.x.
  • Loiret FG, Grimm B, Hajirezaei MR, et al. Inoculation of sugarcane with Pantoea sp increases amino acid contents in shoot tissues; serine, alanine, glutamine and asparagine permit concomitantly ammonium excretion and nitrogenase activity of the bacterium. J Plant Physiol. 2009;166(11):1152–1161. doi: 10.1016/j.jplph.2009.01.002.
  • Duan J, Yi T, Lu Z, et al. Rice endophyte Pantoea agglomerans YS19 forms multicellular symplasmata via cell aggregation. FEMS Microbiol Lett. 2007;270(2):220–226. doi: 10.1111/j.1574-6968.2007.00677.x.
  • Baldani VLD, Baldani JI, Döbereiner J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertility Soils. 2000;30(5-6):485–491. doi: 10.1007/s003740050027.
  • Chiarini L, Bevivino A, Tabacchioni S, et al. Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem. 1998;30(1):81–87. doi: 10.1016/S0038-0717(97)00096-5.
  • Estrada P, Mavingui P, Cournoyer B, et al. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol. 2002;48(4):285–294. doi: 10.1139/w02-023.
  • Compant S, Nowak J, Coenye T, et al. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev. 2008;32(4):607–626. doi: 10.1111/j.1574-6976.2008.00113.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.