899
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancements in the study of inward rectifying potassium channels on vascular cells

& ORCID Icon
Article: 2237303 | Received 16 May 2023, Accepted 04 Jul 2023, Published online: 18 Jul 2023

References

  • Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90(1):291–16. doi: 10.1152/physrev.00021.2009
  • Walsh KB. Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators. SLAS Discov. 2020;25(5):420–433. doi: 10.1177/2472555220905558
  • Meng XY, Liu S, Cui M, et al. The molecular mechanism of opening the Helix Bundle Crossing (HBC) gate of a Kir channel. Sci Rep. 2016;6(1):29399. doi: 10.1038/srep29399
  • Rapedius M, Fowler PW, Shang L, et al. H bonding at the helix-bundle crossing controls gating in Kir potassium channels. Neuron. 2007;55(4):602–614. doi: 10.1016/j.neuron.2007.07.026
  • Zuo D, Chen K, Zhou M, et al. Kir2.1 and K2P1 channels reconstitute two levels of resting membrane potential in cardiomyocytes. J Physiol. 2017;595(15):5129–5142. doi: 10.1113/JP274268
  • Ahn SJ, Fancher IS, Granados ST, et al. Cholesterol-induced suppression of endothelial Kir channels is a driver of impairment of arteriolar flow-induced vasodilation in humans. Hypertension. 2022;79(1):126–138. doi: 10.1161/HYPERTENSIONAHA.121.17672
  • Akyuz E, Koklu B, Uner A, et al. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res. 2022;100(2):413–443. doi: 10.1002/jnr.24985
  • Leem YE, Jeong HJ, Kim HJ, et al. Cdo regulates surface expression of Kir2.1 K+ channel in myoblast differentiation. PLoS One. 2016;11(7):e0158707. doi: 10.1371/journal.pone.0158707
  • Hebert SC, Desir G, Giebisch G, et al. Molecular diversity and regulation of renal potassium channels. Physiol Rev. 2005;85(1):319–371. doi: 10.1152/physrev.00051.2003
  • Marmolejo-Murillo LG, Arechiga-Figueroa IA, Moreno-Galindo EG, et al. Kir4.1/Kir5.1 channels possess strong intrinsic inward rectification determined by a voltage-dependent K±flux gating mechanism. J Gen Physiol. 2021;153(5). doi: 10.1085/jgp.201912540
  • Noujaim SF, Stuckey JA, Ponce-Balbuena D, et al. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. FASEB J. 2010;24(11):4302–4312. doi: 10.1096/fj.10-163246
  • Ha J, Xu Y, Kawano T, et al. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). J Biol Chem. 2018;293(10):3546–3561. doi: 10.1074/jbc.RA117.001679
  • Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys. 2008;37(1):175–195. doi: 10.1146/annurev.biophys.37.032807.125859
  • Dahlmann A, Li M, Gao Z, et al. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling. J Gen Physiol. 2004;123(4):441–454. doi: 10.1085/jgp.200308989
  • Gada KD, Logothetis DE. PKC regulation of ion channels: The involvement of PIP(2). J Biol Chem. 2022;298(6):102035. doi: 10.1016/j.jbc.2022.102035
  • Tucker SJ, Ashcroft FM. Mapping of the physical interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2. J Biol Chem. 1999;274(47):33393–33397. doi: 10.1074/jbc.274.47.33393
  • Dascal N, Kahanovitch U. The roles of gbetagamma and galpha in gating and regulation of GIRK channels. Int Rev Neurobiol. 2015;123:27–85.
  • Lin Y, Li J, Zhu B, et al. Zacopride exerts an antiarrhythmic effect by specifically stimulating the cardiac inward rectifier potassium current in rabbits: exploration of a new antiarrhythmic strategy. Curr Pharm Des. 2020;26(44):5746–5754. doi: 10.2174/1381612826666200701135508
  • Dogan MF, Yildiz O, Arslan SO, et al. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol. 2019;33(5):504–523. doi: 10.1111/fcp.12461
  • Cao C, Goo JH, Lee-Kwon W, et al. Vasa recta pericytes express a strong inward rectifier K+ conductance. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1601–1607. doi: 10.1152/ajpregu.00877.2005
  • Tennant BP, Cui Y, Tinker A, et al. Functional expression of inward rectifier potassium channels in cultured human pulmonary smooth muscle cells: evidence for a major role of Kir2.4 subunits. J Membr Biol. 2006;213(1):19–29. doi: 10.1007/s00232-006-0037-y
  • Gonzalez C, Baez-Nieto D, Valencia I, et al. K(+) channels: function-structural overview. Compr Physiol. 2012;2(3):2087–2149.
  • Zaritsky JJ, Eckman DM, Wellman GC, et al. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ Res. 2000;87(2):160–166. doi: 10.1161/01.RES.87.2.160
  • Sancho M, Fletcher J, Welsh DG. Inward rectifier potassium channels: membrane lipid-dependent mechanosensitive gates in brain vascular cells. Front Cardiovasc Med. 2022;9:869481. doi: 10.3389/fcvm.2022.869481
  • Yang Y, Chen F, Karasawa T, et al. Diverse Kir expression contributes to distinct bimodal distribution of resting potentials and vasotone responses of arterioles. PLoS One. 2015;10(5):e0125266. doi: 10.1371/journal.pone.0125266
  • Lee JY, Ko EJ, Ahn KD, et al. The role of K(+) conductances in regulating membrane excitability in human gastric corpus smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2015;308(7):G625–633. doi: 10.1152/ajpgi.00220.2014
  • Wu BN, Luykenaar KD, Brayden JE, et al. Hyposmotic challenge inhibits inward rectifying K+ channels in cerebral arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2007;292(2):H1085–1094. doi: 10.1152/ajpheart.00926.2006
  • Kowalewska PM, Fletcher J, Jackson WF, et al. Genetic ablation of smooth muscle KIR2.1 is inconsequential to the function of mouse cerebral arteries. J Cereb Blood Flow Metab. 2022;42(9):1693–1706. doi: 10.1177/0271678X221093432
  • Longden TA, Nelson MT. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation. 2015;22(3):183–196. doi: 10.1111/micc.12190
  • Sancho M, Fabris S, Hald BO, et al. Membrane lipid-KIR2.X channel interactions enable hemodynamic sensing in cerebral arteries. Arterioscler Thromb Vasc Biol. 2019;39(6):1072–1087. doi: 10.1161/ATVBAHA.119.312493
  • D’Avanzo N, Hyrc K, Enkvetchakul D, et al. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One. 2011;6(4):e19393. doi: 10.1371/journal.pone.0019393
  • D’Avanzo N, Cheng WW, Doyle DA, et al. Direct and specific activation of human inward rectifier K+ channels by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2010;285(48):37129–37132. doi: 10.1074/jbc.C110.186692
  • Romanenko VG, Fang Y, Byfield F, et al. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J. 2004;87(6):3850–3861. doi: 10.1529/biophysj.104.043273
  • Shyng SL, Nichols CG. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science. 1998;282(5391):1138–1141. doi: 10.1126/science.282.5391.1138
  • Oonuma H, Iwasawa K, Iida H, et al. Inward rectifier K(+) current in human bronchial smooth muscle cells: inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA. Am J Respir Cell Mol Biol. 2002;26(3):371–379. doi: 10.1165/ajrcmb.26.3.4542
  • Park WS, Kim N, Youm JB, et al. Angiotensin II inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Calpha. Biochem Biophys Res Commun. 2006;341(3):728–735. doi: 10.1016/j.bbrc.2006.01.026
  • Chilton L, Loutzenhiser K, Morales E, et al. Inward rectifier K(+) currents and Kir2.1 expression in renal afferent and efferent arterioles. J Am Soc Nephrol. 2008;19(1):69–76. doi: 10.1681/ASN.2007010039
  • Chilton L, Smirnov SV, Loutzenhiser K, et al. Segment-specific differences in the inward rectifier K(+) current along the renal interlobular artery. Cardiovasc Res. 2011;92(1):169–177. doi: 10.1093/cvr/cvr179
  • Liu Y, Wang Y, Guo P, et al. Prostanoids contribute to regulation of inwardly rectifying K(+) channels in intrarenal arterial smooth muscle cells. Life Sci. 2020;250:117586. doi: 10.1016/j.lfs.2020.117586
  • Tykocki NR, Bonev AD, Longden TA, et al. Inhibition of vascular smooth muscle inward-rectifier K(+) channels restores myogenic tone in mouse urinary bladder arterioles. Am J Physiol Renal Physiol. 2017;312(5):F836–F847. doi: 10.1152/ajprenal.00682.2016
  • Jantzi MC, Brett SE, Jackson WF, et al. Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. Am J Physiol Heart Circ Physiol. 2006;291(3):H1319–1328. doi: 10.1152/ajpheart.00217.2006
  • Tajada S, Cidad P, Moreno-Dominguez A, et al. High blood pressure associates with the remodelling of inward rectifier K+ channels in mice mesenteric vascular smooth muscle cells. J Physiol. 2012;590(23):6075–6091. doi: 10.1113/jphysiol.2012.236190
  • Kim HJ, Yin MZ, Cho S, et al. Increased inward rectifier K(+) current of coronary artery smooth muscle cells in spontaneously hypertensive rats; partial compensation of the attenuated endothelium-dependent relaxation via Ca(2+) -activated K(+) channels. Clin Exp Pharmacol Physiol. 2020;47(1):38–48. doi: 10.1111/1440-1681.13168
  • Park WS, Han J, Kim N, et al. Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2005;289(6):H2461–2467. doi: 10.1152/ajpheart.00331.2005
  • Weyer GW, Jahromi BS, Aihara Y, et al. Expression and function of inwardly rectifying potassium channels after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26(3):382–391. doi: 10.1038/sj.jcbfm.9600193
  • Bastide M, Ouk T, Petrault O, et al. Time-induced progressive alteration of kir current in cerebral smooth muscle cells of stroke-prone spontaneously hypertensive rats. Int J Hypertens. 2013;2013:849750. doi: 10.1155/2013/849750
  • Kim SE, Yin MZ, Kim HJ, et al. Decreased inward rectifier and voltage-gated K(+) currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats. Korean J Physiol Pharmacol. 2020;24(1):111–119. doi: 10.4196/kjpp.2020.24.1.111
  • Sancho M, Gao Y, Hald BO, et al. An assessment of KIR channel function in human cerebral arteries. Am J Physiol Heart Circ Physiol. 2019;316(4):H794–H800. doi: 10.1152/ajpheart.00022.2019
  • Kohler R, Ruth P. Endothelial dysfunction and blood pressure alterations in K±channel transgenic mice. Pflugers Arch. 2010;459(6):969–976. doi: 10.1007/s00424-010-0819-z
  • Crane GJ, Walker SD, Dora KA, et al. Evidence for a differential cellular distribution of inward rectifier K channels in the rat isolated mesenteric artery. J Vasc Res. 2003;40(2):159–168. doi: 10.1159/000070713
  • Fang Y, Schram G, Romanenko VG, et al. Functional expression of Kir2.X in human aortic endothelial cells: the dominant role of Kir2.2. Am J Physiol Cell Physiol. 2005;289(5):C1134–1144. doi: 10.1152/ajpcell.00077.2005
  • Climent B, Zsiros E, Stankevicius E, et al. Intact rat superior mesenteric artery endothelium is an electrical syncytium and expresses strong inward rectifier K+ conductance. Biochem Biophys Res Commun. 2011;410(3):501–507. doi: 10.1016/j.bbrc.2011.06.011
  • Jang SS, Park J, Hur SW, et al. Endothelial progenitor cells functionally express inward rectifier potassium channels. Am J Physiol Cell Physiol. 2011;301(1):C150–161. doi: 10.1152/ajpcell.00002.2010
  • Jackson WF. Endothelial ion channels and cell-cell communication in the microcirculation. Front Physiol. 2022;13:805149. doi: 10.3389/fphys.2022.805149
  • Qu L, Yu L, Wang Y, et al. Inward Rectifier K+ currents are regulated by CaMKII in endothelial cells of primarily cultured bovine pulmonary arteries. PLoS One. 2015;10(12):e0145508. doi: 10.1371/journal.pone.0145508
  • Kito H, Yamazaki D, Ohya S, et al. Up-regulation of K(ir)2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochem Biophys Res Commun. 2011;411(2):293–298. doi: 10.1016/j.bbrc.2011.06.128
  • Fancher IS, Levitan I. Endothelial inwardly-rectifying K(+) channels as a key component of shear stress-induced mechanotransduction. Curr Top Membr. 2020;85:59–88.
  • Sonkusare SK, Dalsgaard T, Bonev AD, et al. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators. J Physiol. 2016;594(12):3271–3285. doi: 10.1113/JP271652
  • Goto K, Rummery NM, Grayson TH, et al. Attenuation of conducted vasodilatation in rat mesenteric arteries during hypertension: role of inwardly rectifying potassium channels. J Physiol. 2004;561(Pt 1):215–231. doi: 10.1113/jphysiol.2004.070458
  • Climent B, Simonsen U, Rivera L. Effects of obesity on vascular potassium channels. Curr Vasc Pharmacol. 2014;12(3):438–452. doi: 10.2174/1570161112666140423221622
  • Hakim MA, Chum PP, Buchholz JN, et al. Aging alters cerebrovascular endothelial GPCR and K+ channel function: divergent role of biological sex. J Gerontol A Biol Sci Med Sci. 2020;75(11):2064–2073. doi: 10.1093/gerona/glz275
  • Ahn SJ, Le Master E, Lee JC, et al. Differential effects of obesity on visceral versus subcutaneous adipose arteries: role of shear-activated Kir2.1 and alterations to the glycocalyx. Am J Physiol Heart Circ Physiol. 2022;322(2):H156–H166. doi: 10.1152/ajpheart.00399.2021
  • Fancher IS, Ahn SJ, Adamos C, et al. Hypercholesterolemia-induced loss of flow-induced vasodilation and lesion formation in apolipoprotein E-Deficient mice critically depend on inwardly rectifying K(+) channels. J Am Heart Assoc. 2018;7(5). doi: 10.1161/JAHA.117.007430
  • Fang Y, Mohler ER 3rd, Hsieh E, et al. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ Res. 2006;98(8):1064–1071. doi: 10.1161/01.RES.0000218776.87842.43
  • Alaaeddine R, Elkhatib MAW, Mroueh A, et al. Impaired Endothelium-dependent hyperpolarization underlies endothelial dysfunction during early metabolic challenge: increased ROS generation and possible interference with NO function. J Pharmacol Exp Ther. 2019;371(3):567–582. doi: 10.1124/jpet.119.262048
  • Fancher IS, Le Master E, Ahn SJ, et al. Impairment of flow-sensitive inwardly rectifying K(+) channels via disruption of glycocalyx mediates obesity-induced endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2020;40(9):e240–e255. doi: 10.1161/ATVBAHA.120.314935
  • Lacalle-Aurioles M, Trigiani LJ, Bourourou M, et al. Alzheimer’s disease and cerebrovascular pathology alter inward rectifier potassium (K(IR) 2.1) channels in endothelium of mouse cerebral arteries. Br J Pharmacol. 2022;179(10):2259–2274. doi: 10.1111/bph.15751
  • Hakim MA, Behringer EJ, Aguayo L. Development of Alzheimer’s disease progressively alters sex-dependent KCa and sex-independent KIR channel function in cerebrovascular endothelium. J Alzheimers Dis. 2020;76(4):1423–1442. doi: 10.3233/JAD-200085
  • Hakim MA, Behringer EJ. K(IR) channel regulation of electrical conduction along cerebrovascular endothelium: Enhanced modulation during Alzheimer’s disease. Microcirculation. 2023;30(1):e12797. doi: 10.1111/micc.12797
  • Zhang M, Che C, Cheng J, et al. Ion channels in stem cells and their roles in stem cell biology and vascular diseases. J Mol Cell Cardiol. 2022;166:63–73. doi: 10.1016/j.yjmcc.2022.02.002
  • Cui X, Li X, He Y, et al. Slight up-regulation of Kir2.1 channel promotes endothelial progenitor cells to transdifferentiate into a pericyte phenotype by Akt/mTOR/Snail pathway. J Cell Mol Med. 2021;25(21):10088–10100. doi: 10.1111/jcmm.16944
  • Zhang X, Cui X, Li X, et al. Inhibition of Kir2.1 channel-induced depolarization promotes cell biological activity and differentiation by modulating autophagy in late endothelial progenitor cells. J Mol Cell Cardiol. 2019;127:57–66. doi: 10.1016/j.yjmcc.2018.11.005
  • Tao R, Lau CP, Tse HF, et al. Functional ion channels in mouse bone marrow mesenchymal stem cells. Am J Physiol Cell Physiol. 2007;293(5):C1561–1567. doi: 10.1152/ajpcell.00240.2007
  • Hinard V, Belin D, Konig S, et al. Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242. Development. 2008;135(5):859–867. doi: 10.1242/dev.011387