1,552
Views
0
CrossRef citations to date
0
Altmetric
Review

TMEM120A/TACAN: A putative regulator of ion channels, mechanosensation, and lipid metabolism

ORCID Icon & ORCID Icon
Article: 2237306 | Received 22 Dec 2022, Accepted 12 Jul 2023, Published online: 31 Jul 2023

References

  • Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–16. doi: 10.1126/science.1193270
  • Ranade SS, Woo SH, Dubin AE, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature. 2014;516(7529):121–125. doi: 10.1038/nature13980
  • Woo SH, Ranade S, Weyer AD, et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature. 2014;509(7502):622–626. doi: 10.1038/nature13251
  • Woo SH, Lukacs V, de Nooij JC, et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci. 2015;18(12):1756–1762. doi: 10.1038/nn.4162
  • Szczot M, Liljencrantz J, Ghitani N, et al. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci Transl Med. 2018;10(462):10. doi: 10.1126/scitranslmed.aat9892
  • Murthy SE, Loud MC, Daou I, et al. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci Transl Med. 2018;10(462):10. doi: 10.1126/scitranslmed.aat9897
  • Parpaite T, Brosse L, Sejourne N, et al. Patch-seq of mouse DRG neurons reveals candidate genes for specific mechanosensory functions. Cell Rep. 2021;37(5):109914. doi: 10.1016/j.celrep.2021.109914
  • Hong GS, Lee B, Wee J, et al. Tentonin 3/TMEM150c confers distinct mechanosensitive currents in dorsal-root ganglion neurons with proprioceptive function. Neuron. 2016;91(1):107–118. doi: 10.1016/j.neuron.2016.05.029
  • Beaulieu-Laroche L, Christin M, Donoghue A, et al. TACAN is an ion channel involved in sensing mechanical pain. Cell. 2020;180(5):956–67 e17. doi: 10.1016/j.cell.2020.01.033
  • Dubin AE, Murthy S, Lewis AH, et al. Endogenous piezo1 can confound mechanically activated channel identification and characterization. Neuron. 2017;94(2):266–70 e3. doi: 10.1016/j.neuron.2017.03.039
  • Anderson EO, Schneider ER, Matson JD, et al. TMEM150C/Tentonin3 is a regulator of mechano-gated ion channels. Cell Rep. 2018;23(3):701–708. doi: 10.1016/j.celrep.2018.03.094
  • Ojeda-Alonso J, Begay V, Garcia-Contreras JA, et al. Lack of evidence for participation of TMEM150C in sensory mechanotransduction. J Gen Physiol. 2022;154(12):154. doi: 10.1085/jgp.202213098
  • Del Rosario JS, Gabrielle M, Yudin Y, et al. TMEM120A/TACAN inhibits mechanically activated PIEZO2 channels. J Gen Physiol. 2022;154(8):154. doi: 10.1085/jgp.202213164
  • Niu Y, Tao X, Vaisey G, et al. Analysis of the mechanosensor channel functionality of TACAN. Elife. 2021;10:10. doi: 10.7554/eLife.71188
  • Xue J, Han Y, Baniasadi H, et al. TMEM120A is a coenzyme A-binding membrane protein with structural similarities to ELOVL fatty acid elongase. Elife. 2021;10:10. doi: 10.7554/eLife.71220
  • Rong Y, Jiang J, Gao Y, et al. TMEM120A contains a specific coenzyme A-binding site and might not mediate poking- or stretch-induced channel activities in cells. Elife. 2021;10:10. doi: 10.7554/eLife.71474
  • Liu X, Zhang R, Fatehi M, et al. Regulation of the PKD2 channel function by TACAN. J Physiol. 2022;601:83–98.
  • Ke M, Yu Y, Zhao C, et al. Cryo-EM structures of human TMEM120A and TMEM120B. Cell Discov. 2021;7(1):77. doi: 10.1038/s41421-021-00319-5
  • Batrakou DG, de Las Heras JI, Czapiewski R, et al. TMEM120A and B: nuclear envelope transmembrane proteins important for adipocyte differentiation. Plos One. 2015;10(5):e0127712. doi: 10.1371/journal.pone.0127712
  • Czapiewski R, Batrakou DG, de LasHeras JI, et al. Genomic loci mispositioning in Tmem120a knockout mice yields latent lipodystrophy. Nat Commun. 2022;13(1):321. doi: 10.1038/s41467-021-27869-2
  • Li YX, Yang X, Xu N, et al. The endoplasmic reticulum-resident protein TMEM-120/TMEM120A promotes fat storage in C. elegans and mammalian cells. bioRxiv [Preprint]. 2021. doi: 10.1101/2021.06.29.450322
  • Li S, Qian N, Jiang C, et al. Gain-of-function genetic screening identifies the antiviral function of TMEM120A via STING activation. Nat Commun. 2022;13(1):105. doi: 10.1038/s41467-021-27670-1
  • Bonet IJM, Araldi D, Bogen O, et al. Involvement of TACAN, a mechanotransducing ion channel, in inflammatory but not neuropathic hyperalgesia in the rat. J Pain. 2020;22(5):498–508. doi: 10.1016/j.jpain.2020.11.004
  • Lei Y, Xie MX, Cao XY, et al. Parkin inhibits static mechanical pain by suppressing membrane trafficking of mechano-transducing ion channel TACAN. Neurosci Bull. 2022;38(4):429–434. doi: 10.1007/s12264-022-00843-8
  • Zhang XL, Lei Y, Xiao YB, et al. Hen egg lysozyme alleviates static mechanical pain via NRF1-Parkin-TACAN signaling axis in sensory neurons. Neuroscience. 2022;502:52–67. doi: 10.1016/j.neuroscience.2022.08.010
  • Shang Y, Li Y, Yang Z, et al. Upregulation of TACAN in the trigeminal ganglion affects pain transduction in acute pulpitis. Arch Oral Biol. 2022;143:105530. doi: 10.1016/j.archoralbio.2022.105530
  • Chen X, Wang Y, Li Y, et al. Cryo-EM structure of the human TACAN in a closed state. Cell Rep. 2022;38(9):110445. doi: 10.1016/j.celrep.2022.110445
  • Le Pichon CE, Chesler AT. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front Neuroanat. 2014;8:21. doi: 10.3389/fnana.2014.00021
  • Poole K, Herget R, Lapatsina L, et al. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun. 2014;5(1):3520. doi: 10.1038/ncomms4520
  • Sianati S, Kurumlian A, Bailey E, et al. Analysis of mechanically activated ion channels at the cell-substrate interface: combining pillar arrays and whole-cell patch-clamp. Front Bioeng Biotechnol. 2019;7:47. doi: 10.3389/fbioe.2019.00047
  • Zakharian E, Cao C, Rohacs T. Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J Neurosci. 2010;30(37):12526–12534. doi: 10.1523/JNEUROSCI.3189-10.2010
  • Lukacs V, Rives JM, Sun X, et al. Promiscuous activation of transient receptor potential vanilloid 1 (TRPV1) channels by negatively charged intracellular lipids: the key role of endogenous phosphoinositides in maintaining channel activity. J Biol Chem. 2013;288(49):35003–35013. doi: 10.1074/jbc.M113.520288
  • Syeda R, Florendo MN, Cox CD, et al. Piezo1 Channels are Inherently Mechanosensitive. Cell Rep. 2016;17(7):1739–1746. doi: 10.1016/j.celrep.2016.10.033
  • Heimburg T. Lipid ion channels. Biophys Chem. 2010;150(1–3):2–22. doi: 10.1016/j.bpc.2010.02.018
  • Oliynyk V, Kaatze U, Heimburg T. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment. Biochim Biophys Acta. 2007;1768(2):236–245. doi: 10.1016/j.bbamem.2006.10.007
  • Blicher A, Wodzinska K, Fidorra M, et al. The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics. Biophys J. 2009;96(11):4581–4591. doi: 10.1016/j.bpj.2009.01.062
  • Laub KR, Witschas K, Blicher A, et al. Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels. Biochim Biophys Acta. 2012;1818(5):1123–1134. doi: 10.1016/j.bbamem.2012.01.014
  • Bae C, Sachs F, Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry. 2011;50(29):6295–6300. doi: 10.1021/bi200770q
  • Gnanasambandam R, Ghatak C, Yasmann A, et al. GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys J. 2017;112(1):31–45. doi: 10.1016/j.bpj.2016.11.013
  • Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol. 2017;18(12):771–783. doi: 10.1038/nrm.2017.92
  • Kurima K, Peters LM, Yang Y, et al. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet. 2002;30(3):277–284. doi: 10.1038/ng842
  • Zheng W, Holt JR. The mechanosensory transduction machinery in inner ear hair cells. Annu Rev Biophys. 2021;50(1):31–51. doi: 10.1146/annurev-biophys-062420-081842
  • Nie L, Pascoa TC, Pike ACW, et al. The structural basis of fatty acid elongation by the ELOVL elongases. Nat Struct Mol Biol. 2021;28(6):512–520. doi: 10.1038/s41594-021-00605-6
  • Zhang Z, Chen J. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell. 2016;167(6):1586–97 e9. doi: 10.1016/j.cell.2016.11.014
  • Zhang M, Wang D, Kang Y, et al. Structure of the mechanosensitive OSCA channels. Nat Struct Mol Biol. 2018;25(9):850–858. doi: 10.1038/s41594-018-0117-6
  • Naganuma T, Sato Y, Sassa T, et al. Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 2011;585(20):3337–3341. doi: 10.1016/j.febslet.2011.09.024
  • Ohno Y, Suto S, Yamanaka M, et al. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci U S A. 2010;107(43):18439–18444. doi: 10.1073/pnas.1005572107
  • Moon YA, Shah NA, Mohapatra S, et al. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem. 2001;276(48):45358–45366. doi: 10.1074/jbc.M108413200
  • Rosell M, Kaforou M, Frontini A, et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab. 2014;306(8):E945–64. doi: 10.1152/ajpendo.00473.2013
  • Haakonsson AK, Stahl Madsen M, Nielsen R, et al. Acute genome-wide effects of rosiglitazone on PPARγ transcriptional networks in adipocytes. Mol Endocrinol. 2013;27(9):1536–1549. doi: 10.1210/me.2013-1080
  • Malik P, Korfali N, Srsen V, et al. Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope. Cell Mol Life Sci. 2010;67(8):1353–1369. doi: 10.1007/s00018-010-0257-2
  • de Las Heras JI, Zuleger N, Batrakou DG, et al. Tissue-specific NETs alter genome organization and regulation even in a heterologous system. Nucleus. 2017;8(1):81–97. doi: 10.1080/19491034.2016.1261230
  • Qian N, Li S, Tan X. The curious case of TMEM120A: Mechanosensor, fat regulator, or antiviral defender? BioEssays. 2022;44(6):e2200045. doi: 10.1002/bies.202200045
  • Borbiro I, Badheka D, Rohacs T. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci Signal. 2015;8(363):ra15. doi: 10.1126/scisignal.2005667
  • Michel N, Narayanan P, Shomroni O, et al. Maturational changes in mouse cutaneous touch and piezo2-mediated mechanotransduction. Cell Rep. 2020;32(3):107912. doi: 10.1016/j.celrep.2020.107912
  • Chang W, Gu JG. Role of microtubules in Piezo2 mechanotransduction of mouse Merkel cells. J Neurophysiol. 2020;124(6):1824–1831. doi: 10.1152/jn.00502.2020
  • Romero LO, Caires R, Nickolls AR, et al. A dietary fatty acid counteracts neuronal mechanical sensitization. Nat Commun. 2020;11(1):2997. doi: 10.1038/s41467-020-16816-2
  • Romero LO, Massey AE, Mata-Daboin AD, et al. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat Commun. 2019;10(1):1200. doi: 10.1038/s41467-019-09055-7
  • Zheng W, Nikolaev YA, Gracheva EO, et al. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors. Proc Natl Acad Sci U S A. 2019;116(35):17547–17555. doi: 10.1073/pnas.1910213116
  • Narayanan P, Hutte M, Kudryasheva G, et al. Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons. Elife. 2018;7: doi: 10.7554/eLife.32346
  • Shi J, Hyman AJ, De Vecchis D, et al. Sphingomyelinase disables inactivation in endogenous PIEZO1 channels. Cell Rep. 2020;33(1):108225. doi: 10.1016/j.celrep.2020.108225
  • Romero LO, Caires R, Kaitlyn Victor A, et al. Linoleic acid improves PIEZO2 dysfunction in a mouse model of angelman syndrome. Nat Commun. 2023;14(1):1167. doi: 10.1038/s41467-023-36818-0
  • Ma S, Dubin AE, Romero LO, et al. Excessive mechanotransduction in sensory neurons causes joint contractures. Science. 2023;379(6628):201–206. doi: 10.1126/science.add3598
  • Del Rosario JS, Yudin Y, Su S, et al. Gi-coupled receptor activation potentiates Piezo2 currents via Gβγ. EMBO Rep. 2020;21(5):e49124. doi: 10.15252/embr.201949124
  • Sharif-Naeini R, Folgering JH, Bichet D, et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell. 2009;139(3):587–596. doi: 10.1016/j.cell.2009.08.045
  • Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–137. doi: 10.1038/ng1076
  • Ma L, Matsumoto M, Xie W, et al. Evidence for lysophosphatidic acid 1 receptor signaling in the early phase of neuropathic pain mechanisms in experiments using Ki-16425, a lysophosphatidic acid 1 receptor antagonist. J Neurochem. 2009;109(2):603–610. doi: 10.1111/j.1471-4159.2009.05987.x
  • Ma L, Nagai J, Chun J, et al. An LPA species (18: 1 LPA) plays key roles in the self-amplification of spinal LPA production in the peripheral neuropathic pain model. Mol Pain. 2013;9:29. doi: 10.1186/1744-8069-9-29
  • Kuwajima K, Sumitani M, Kurano M, et al. Lysophosphatidic acid is associated with neuropathic pain intensity in humans: An exploratory study. Plos One. 2018;13(11):e0207310. doi: 10.1371/journal.pone.0207310
  • Mihara Y, Horikawa M, Sato S, et al. Lysophosphatidic acid precursor levels decrease and an arachidonic acid-containing phosphatidylcholine level increases in the dorsal root ganglion of mice after peripheral nerve injury. Neurosci Lett. 2019;698:69–75. doi: 10.1016/j.neulet.2018.12.035
  • Chesler AT, Szczot M, Bharucha-Goebel D, et al. The role of PIEZO2 in human mechanosensation. N Engl J Med. 2016;375(14):1355–1364. doi: 10.1056/NEJMoa1602812
  • Zhang M, Wang Y, Geng J, et al. Mechanically activated piezo channels mediate touch and suppress acute mechanical pain response in mice. Cell Rep. 2019;26(6):1419–31 e4. doi: 10.1016/j.celrep.2019.01.056
  • Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–979. doi: 10.1126/science.150.3699.971