1,002
Views
0
CrossRef citations to date
0
Altmetric
Review

Type 3 IP3 receptor: Its structure, functions, and related disease implications

&
Article: 2267416 | Received 21 May 2023, Accepted 02 Oct 2023, Published online: 11 Oct 2023

References

  • Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000 Oct;1(1):11–15. doi: 10.1038/35036035
  • Zhai M, Yang D, Yi W, et al. Involvement of calcium channels in the regulation of adipogenesis. Adipocyte. 2020 Dec;9(1):132–141. doi: 10.1080/21623945.2020.1738792
  • Clapham DE. Calcium signaling. Cell. 2007 Dec 14;131(6):1047–1058. doi: 10.1016/j.cell.2007.11.028
  • Szewczyk A, Saczko J, Kulbacka J. Apoptosis as the main type of cell death induced by calcium electroporation in rhabdomyosarcoma cells. Bioelectrochemistry. 2020 Dec;136:107592. doi: 10.1016/j.bioelechem.2020.107592
  • Bootman MD, Bultynck G. Fundamentals of cellular calcium signaling: a primer. Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):a038802. doi: 10.1101/cshperspect.a038802
  • Rosa N, Sneyers F, Parys JB et al. Type 3 IP(3) receptors: the chameleon in cancer. Int Rev Cell Mol Biol. 2020;351:101–148. doi:10.1016/bs.ircmb.2020.02.003
  • Hamada K, Mikoshiba K. IP 3 receptor plasticity underlying diverse functions. Annu Rev Physiol. 2020 Feb 10;82(1):151–176. doi: 10.1146/annurev-physiol-021119-034433
  • Foskett JK, White C, Cheung KH, et al. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007 Apr;87(2):593–658. doi: 10.1152/physrev.00035.2006
  • Ivanova H, Vervliet T, Missiaen L, et al. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta. 2014 Oct;1843(10):2164–2183. doi: 10.1016/j.bbamcr.2014.03.007
  • Taylor CW, Genazzani AA, Morris SA. Expression of inositol trisphosphate receptors. Cell Calcium. 1999 Dec;26(6):237–251. doi: 10.1054/ceca.1999.0090
  • Vermassen E, Parys JB, Mauger JP. Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: functional relevance and molecular determinants. Biol Cell. 2004 Feb;96(1):3–17. doi: 10.1016/j.biolcel.2003.11.004
  • De Smedt H, Missiaen L, Parys JB, et al. Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem. 1994 Aug 26;269(34):21691–21698. doi: 10.1016/S0021-9258(17)31861-6
  • De Smedt H, Missiaen L, Parys JB, et al. Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. Biochem J. 1997 Mar 1;322(Pt 2):575–583. doi: 10.1042/bj3220575
  • Perez PJ, Ramos-Franco J, Fill M, et al. Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J Biol Chem. 1997 Sep 19;272(38):23961–23969. doi: 10.1074/jbc.272.38.23961
  • Hirata K, Pusl T, O’Neill AF, et al. The type II inositol 1,4,5-trisphosphate receptor can trigger Ca2+ waves in rat hepatocytes. Gastroenterology. 2002 Apr;122(4):1088–1100. doi: 10.1053/gast.2002.32363
  • Kerkhofs M, Seitaj B, Ivanova H, et al. Pathophysiological consequences of isoform-specific IP(3) receptor mutations. Biochim Biophys Acta, Mol Cell Res. 2018 Nov;1865(11 Pt B):1707–1717. doi: 10.1016/j.bbamcr.2018.06.004
  • Vervloessem T, Yule DI, Bultynck G, et al. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca(2)(+)-release channel. Biochim Biophys Acta. 2015 Sep;1853(9):1992–2005. doi: 10.1016/j.bbamcr.2014.12.006
  • Newton CL, Mignery GA, Sudhof TC. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. doi: 10.1016/S0021-9258(19)61949-6
  • Kuchay S, Giorgi C, Simoneschi D, et al. PTEN counteracts FBXL2 to promote IP3R3- and Ca(2+)-mediated apoptosis limiting tumour growth. Nature. 2017 Jun 22;546(7659):554–558. doi: 10.1038/nature22965
  • Zhang M, Wang L, Yue Y, et al. ITPR3 facilitates tumor growth, metastasis and stemness by inducing the NF-kB/CD44 pathway in urinary bladder carcinoma. J Exp Clin Cancer Res. 2021 Feb 11;40(1):65. doi: 10.1186/s13046-021-01866-1
  • Roach JC, Deutsch K, Li S, et al. Genetic mapping at 3-kilobase resolution reveals inositol 1,4,5-triphosphate receptor 3 as a risk factor for type 1 diabetes in Sweden. Am J Hum Genet. 2006 Oct;79(4):614–627. doi: 10.1086/507876
  • Yeung ATY, Choi YH, Lee AHY, et al. A genome-wide knockout screen in human macrophages identified host factors modulating Salmonella infection. MBio. 2019 Oct 8;10(5):10–128. doi: 10.1128/mBio.02169-19
  • Miyachi K, Iwai M, Asada K, et al. Inositol 1,4,5-trisphosphate receptors are autoantibody target antigens in patients with Sjogren’s syndrome and other systemic rheumatic diseases. Mod Rheumatol. 2007;17(2):137–143. doi: 10.3109/s10165-006-0555-6
  • Mo XB, Sun YH, Zhang YH et al. Integrative analysis highlighted susceptibility genes for rheumatoid arthritis. Int Immunopharmacol. 2020 Sep;86:106716. doi:10.1016/j.intimp.2020.106716
  • Oishi T, Iida A, Otsubo S, et al. A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population. J Hum Genet. 2008;53(2):151–162. doi: 10.1007/s10038-007-0233-3
  • Nguyen PH, Lutter EI, Hackstadt T, et al. Chlamydia trachomatis inclusion membrane protein MrcA interacts with the inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) to regulate extrusion formation. PLOS Pathog. 2018 Mar;14(3):e1006911. doi: 10.1371/journal.ppat.1006911
  • Maranto AR. Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium. J Biol Chem. 1994 Jan 14;269(2):1222–1230. doi: 10.1016/S0021-9258(17)42246-0
  • Mignery GA, Sudhof TC. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J. 1990 Dec;9(12):3893–3898. doi: 10.1002/j.1460-2075.1990.tb07609.x
  • Iwai M, Michikawa T, Bosanac I, et al. Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem. 2007 Apr 27;282(17):12755–12764. doi: 10.1074/jbc.M609833200
  • Uchida K, Miyauchi H, Furuichi T, et al. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 2003 May 9;278(19):16551–16560. doi: 10.1074/jbc.M300646200
  • Patterson RL, Boehning D, Snyder SH. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem. 2004;73(1):437–465. doi: 10.1146/annurev.biochem.73.071403.161303
  • Mikoshiba K. IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem. 2007 Sep;102(5):1426–1446. doi: 10.1111/j.1471-4159.2007.04825.x
  • Serysheva II. Toward a high-resolution structure of IP(3)R channel. Cell Calcium. 2014 Sep;56(3):125–132. doi: 10.1016/j.ceca.2014.08.002
  • Bosanac I, Michikawa T, Mikoshiba K, et al. Structural insights into the regulatory mechanism of IP3 receptor. Biochim Biophys Acta. 2004 Dec 6;1742(1–3):89–102. doi: 10.1016/j.bbamcr.2004.09.016
  • Miyawaki A, Furuichi T, Ryou Y, et al. Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4911–4915. doi: 10.1073/pnas.88.11.4911
  • Galvan DL, Borrego-Diaz E, Perez PJ, et al. Subunit oligomerization, and topology of the inositol 1,4, 5-trisphosphate receptor. J Biol Chem. 1999 Oct 8;274(41):29483–29492. doi: 10.1074/jbc.274.41.29483
  • Fan G, Baker ML, Wang Z, et al. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature. 2015 Nov 19;527(7578):336–341. doi: 10.1038/nature15249
  • Paknejad N, Hite RK. Structural basis for the regulation of inositol trisphosphate receptors by Ca(2+) and IP(3). Nat Struct Mol Biol. 2018 Aug;25(8):660–668. doi: 10.1038/s41594-018-0089-6
  • Azumaya CM, Linton EA, Risener CJ, et al. Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist. J Biol Chem. 2020 Feb 7;295(6):1743–1753. doi: 10.1074/jbc.RA119.011570
  • Schmitz EA, Takahashi H, Karakas E. Structural basis for activation and gating of IP(3) receptors. Nat Commun. 2022 Mar 17;13(1):1408. doi: 10.1038/s41467-022-29073-2
  • Fan G, Baker MR, Wang Z, et al. Cryo-EM reveals ligand induced allostery underlying InsP(3)R channel gating. Cell Res. 2018 Dec;28(12):1158–1170. doi: 10.1038/s41422-018-0108-5
  • Mendes CC, Gomes DA, Thompson M, et al. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem. 2005 Dec 9;280(49):40892–40900. doi: 10.1074/jbc.M506623200
  • Sharp AH, Nucifora FC Jr., Blondel O, et al. Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol. 1999 Apr 5;406(2):207–220. doi: 10.1002/(SICI)1096-9861(19990405)406:2<207:AID-CNE6>3.0.CO;2-7
  • Ramos-Lopez O, Riezu-Boj JI, Milagro FI, et al. Dopamine gene methylation patterns are associated with obesity markers and carbohydrate intake. Brain Behav. 2018 Aug;8(8):e01017. doi: 10.1002/brb3.1017
  • Bononi A, Giorgi C, Patergnani S, et al. BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation. Nature. 2017 Jun 22;546(7659):549–553. doi: 10.1038/nature22798
  • Liao C, Zhang Y, Fan C, et al. Identification of BBOX1 as a therapeutic target in Triple-negative breast cancer. Cancer Discov. 2020 Nov;10(11):1706–1721. doi: 10.1158/2159-8290.CD-20-0288
  • Kuchay S, Saeed M, Giorgi C, et al. NS5A promotes constitutive degradation of IP3R3 to counteract apoptosis induced by hepatitis C virus. Cell Rep. 2018 Oct 23;25(4):833–840 e3. doi: 10.1016/j.celrep.2018.09.088
  • Ueasilamongkol P, Khamphaya T, Guerra MT, et al. Type 3 inositol 1,4,5-trisphosphate receptor is increased and enhances malignant properties in cholangiocarcinoma. Hepatology. 2020 Feb;71(2):583–599. doi: 10.1002/hep.30839
  • Wei W, Huang W, Yue J. Requirement of IP3 receptor 3 (IP3R3) in nitric oxide induced cardiomyocyte differentiation of mouse embryonic stem cells. Exp Cell Res. 2016 Aug 1;346(1):9–16. doi: 10.1016/j.yexcr.2016.06.016
  • Mound A, Rodat-Despoix L, Bougarn S, et al. Molecular interaction and functional coupling between type 3 inositol 1,4,5-trisphosphate receptor and BKCa channel stimulate breast cancer cell proliferation. Eur J Cancer. 2013 Nov;49(17):3738–3751. doi: 10.1016/j.ejca.2013.07.013
  • Dos Santos ML, Franca A, Lima Filho ACM, et al. Inositol 1,4,5-trisphosphate receptor type 3 is involved in resistance to apoptosis and maintenance of human hepatocellular carcinoma. Oncol Lett. 2022 Jan;23(1):32. doi: 10.3892/ol.2021.13150
  • Avalle L, Camporeale A, Morciano G, et al. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca(2+) fluxes and apoptotic responses. Cell Death Differ. 2019 May;26(5):932–942. doi: 10.1038/s41418-018-0171-y
  • Rezuchova I, Hudecova S, Soltysova A, et al. Type 3 inositol 1,4,5-trisphosphate receptor has antiapoptotic and proliferative role in cancer cells. Cell Death Dis. 2019 Feb 22;10(3):186. doi: 10.1038/s41419-019-1433-4
  • Yang YD, Li MM, Xu G, et al. Nogo-B receptor directs mitochondria-associated membranes to regulate vascular smooth muscle cell proliferation. Int J Mol Sci. 2019 May 10;20(9):2319. doi: 10.3390/ijms20092319
  • Mound A, Vautrin-Glabik A, Foulon A, et al. Downregulation of type 3 inositol (1,4,5)-trisphosphate receptor decreases breast cancer cell migration through an oscillatory Ca(2+) signal. Oncotarget. 2017 Sep 22;8(42):72324–72341. doi: 10.18632/oncotarget.20327
  • Shibao K, Fiedler MJ, Nagata J, et al. The type III inositol 1,4,5-trisphosphate receptor is associated with aggressiveness of colorectal carcinoma. Cell Calcium. 2010 Dec;48(6):315–323. doi: 10.1016/j.ceca.2010.09.005
  • Liang J, Wang YJ, Tang Y, et al. Type 3 inositol 1,4,5-trisphosphate receptor negatively regulates apoptosis during mouse embryonic stem cell differentiation. Cell Death Differ. 2010 Jul;17(7):1141–1154. doi: 10.1038/cdd.2009.209
  • Kang SS, Han KS, Ku BM, et al. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival. Cancer Res. 2010 Feb 1;70(3):1173–1183. doi: 10.1158/0008-5472.CAN-09-2886
  • Nagaleekar VK, Diehl SA, Juncadella I, et al. IP3 receptor-mediated Ca2+ release in naive CD4 T cells dictates their cytokine program. J Immunol. 2008 Dec 15;181(12):8315–8322. doi: 10.4049/jimmunol.181.12.8315
  • Futatsugi A, Ebisui E, Mikoshiba K. Type 2 and type 3 inositol 1,4,5-trisphosphate (IP3) receptors promote the differentiation of granule cell precursors in the postnatal cerebellum. J Neurochem. 2008 May;105(4):1153–1164. doi: 10.1111/j.1471-4159.2008.05221.x
  • Xue Y, Morris JL, Yang K, et al. SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca(2+) flux to mitochondria. Nat Commun. 2021 Sep 13;12(1):5404. doi: 10.1038/s41467-021-25260-9
  • Florea AM, Varghese E, McCallum JE, et al. Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma. Oncotarget. 2017 Apr 4;8(14):22876–22893. doi: 10.18632/oncotarget.15283
  • Vautrin-Glabik A, Botia B, Kischel P, et al. IP(3)R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. Biochim Biophys Acta, Mol Cell Res. 2018 Jul;1865(7):945–958. doi: 10.1016/j.bbamcr.2018.04.002
  • Geyer M, Huang F, Sun Y, et al. Microtubule-associated protein EB3 regulates IP3 receptor clustering and Ca(2+) signaling in endothelial cells. Cell Rep. 2015 Jul 7;12(1):79–89. doi: 10.1016/j.celrep.2015.06.001
  • Bartok A, Weaver D, Golenar T, et al. IP(3) receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun. 2019 Aug 19;10(1):3726. doi: 10.1038/s41467-019-11646-3
  • Hedskog L, Pinho CM, Filadi R, et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci U S A. 2013 May 7;110(19):7916–7921. doi: 10.1073/pnas.1300677110
  • Mak DO, McBride S, Foskett JK. Regulation by Ca2+ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 insp3 receptors. J Gen Physiol. 2001 May;117(5):435–446. doi: 10.1085/jgp.117.5.435
  • Tu H, Wang Z, Bezprozvanny I. Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J. 2005 Feb;88(2):1056–1069. doi: 10.1529/biophysj.104.049601
  • Chaloux B, Caron AZ, Guillemette G. Protein kinase a increases the binding affinity and the Ca2+ release activity of the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F cells. Biol Cell. 2007 Jul;99(7):379–388. doi: 10.1042/BC20060121
  • Betzenhauser MJ, Wagner LE 2nd, Iwai M, et al. ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action. J Biol Chem. 2008 Aug 1;283(31):21579–21587. doi: 10.1074/jbc.M801680200
  • Maes K, Missiaen L, De Smet P, et al. Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium. 2000 May;27(5):257–267. doi: 10.1054/ceca.2000.0121
  • Tu H, Wang Z, Nosyreva E, et al. Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J. 2005 Feb;88(2):1046–1055. doi: 10.1529/biophysj.104.049593
  • Boehning D, Patterson RL, Sedaghat L, et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol. 2003 Dec;5(12):1051–1061. doi: 10.1038/ncb1063
  • Eckenrode EF, Yang J, Velmurugan GV, et al. Apoptosis protection by mcl-1 and bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem. 2010 Apr 30;285(18):13678–13684. doi: 10.1074/jbc.M109.096040
  • Nguyen N, Francoeur N, Chartrand V, et al. Insulin promotes the association of heat shock protein 90 with the inositol 1,4,5-trisphosphate receptor to dampen its Ca2+ release activity. Endocrinology. 2009 May;150(5):2190–2196. doi: 10.1210/en.2008-1167
  • Lorca RA, Prabagaran M, England SK. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Front Physiol. 2014;5:289. doi: 10.3389/fphys.2014.00289
  • Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Bio. 2010 Jan 11;188(1):11–19. doi: 10.1083/jcb.200909003
  • Hedberg ML, Goh G, Chiosea SI, et al. Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest. 2016 Jan;126(1):169–180. doi: 10.1172/JCI82066
  • Yang YC, Chang TY, Chen TC, et al. ITPR3 gene haplotype is associated with cervical squamous cell carcinoma risk in Taiwanese women. Oncotarget. 2017 Feb 7;8(6):10085–10090. doi: 10.18632/oncotarget.14341
  • Huang YC, Lin YJ, Chang JS, et al. Single nucleotide polymorphism rs2229634 in the ITPR3 gene is associated with the risk of developing coronary artery aneurysm in children with Kawasaki disease. Int J Immunogenet. 2010 Dec;37(6):439–443. doi: 10.1111/j.1744-313X.2010.00943.x
  • Ronkko J, Molchanova S, Revah-Politi A, et al. Dominant mutations in ITPR3 cause Charcot-Marie-Tooth disease. Ann Clin Transl Neurol. 2020 Oct;7(10):1962–1972. doi: 10.1002/acn3.51190
  • Wu Y, Liu Z, Tang D et al. Potentially functional variants of HBEGF and ITPR3 in GnRH signaling pathway genes predict survival of non-small cell lung cancer patients. Transl Res. 2021 Jul;233:92–103. doi:10.1016/j.trsl.2020.12.009
  • Chen J, Zhou J, Jiang Y, et al. Inositol 1,4,5-trisphosphate receptor gene variants are related to the risk of breast cancer in a Chinese population. J Gene Med. 2023 Feb;25(2):e3463. doi: 10.1002/jgm.3463
  • Schabhuttl M, Wieland T, Senderek J, et al. Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. J Neurol. 2014 May;261(5):970–982. doi: 10.1007/s00415-014-7289-8
  • Nakabayashi K, Tajima A, Yamamoto K, et al. Identification of independent risk loci for Graves’ disease within the MHC in the Japanese population. J Hum Genet. 2011 Nov;56(11):772–778. doi: 10.1038/jhg.2011.99
  • Cotsapas C, Speliotes EK, Hatoum IJ, et al. Common body mass index-associated variants confer risk of extreme obesity. Hum Mol Genet. 2009 Sep 15;18(18):3502–3507. doi: 10.1093/hmg/ddp292
  • Kichaev G, Bhatia G, Loh PR, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019 Jan 3;104(1):65–75. doi: 10.1016/j.ajhg.2018.11.008
  • Zhu Z, Zhu X, Liu CL, et al. Shared genetics of asthma and mental health disorders: a large-scale genome-wide cross-trait analysis. Eur Respir J. 2019 Dec;54(6):1901507. doi: 10.1183/13993003.01507-2019
  • Ferreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017 Dec;49(12):1752–1757. doi: 10.1038/ng.3985
  • Heit JA, Armasu SM, McCauley BM, et al. Identification of unique venous thromboembolism-susceptibility variants in African-Americans. Thromb Haemost. 2017 Apr 3;117(4):758–768. doi: 10.1160/TH16-08-0652
  • Wang Y, Bos SD, Harbo HF, et al. Genetic overlap between multiple sclerosis and several cardiovascular disease risk factors. Mult Scler. 2016 Dec;22(14):1783–1793. doi: 10.1177/1352458516635873
  • Takeuchi F, Yokota M, Yamamoto K, et al. Genome-wide association study of coronary artery disease in the Japanese. Eur J Hum Genet. 2012 Mar;20(3):333–340. doi: 10.1038/ejhg.2011.184
  • Padyukov L, Seielstad M, Ong RT, et al. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann Rheum Dis. 2011 Feb;70(2):259–265. doi: 10.1136/ard.2009.126821
  • Mbarek H, Ochi H, Urabe Y, et al. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum Mol Genet. 2011 Oct 1;20(19):3884–3892. doi: 10.1093/hmg/ddr301
  • Turnbull C, Rapley EA, Seal S, et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet. 2010 Jul;42(7):604–607. doi: 10.1038/ng.607
  • Gregersen PK, Amos CI, Lee AT, et al. REL, encoding a member of the NF-kappaB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet. 2009 Jul;41(7):820–823. doi: 10.1038/ng.395
  • Plenge RM, Seielstad M, Padyukov L, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis–a genomewide study. N Engl J Med. 2007 Sep 20;357(12):1199–1209. doi: 10.1056/NEJMoa073491
  • Reddy MV, Wang H, Liu S, et al. Association between type 1 diabetes and GWAS SNPs in the southeast US Caucasian population. Genes Immun. 2011 Apr;12(3):208–212. doi: 10.1038/gene.2010.70
  • Neumann J, Van Nieuwenhove E, Terry LE, et al. Disrupted Ca(2+) homeostasis and immunodeficiency in patients with functional IP(3) receptor subtype 3 defects. Cell Mol Immunol. 2023 Jan;20(1):11–25. doi: 10.1038/s41423-022-00928-4
  • Horjus J, van Mourik-Banda T, Heerings MAP, et al. Whole exome sequencing in multi-incident families identifies novel candidate genes for multiple sclerosis. Int J Mol Sci. 2022 Sep 28;23(19):11461. doi: 10.3390/ijms231911461
  • Yucesoy B, Talzhanov Y, Michael Barmada M, et al. Association of MHC region SNPs with irritant susceptibility in healthcare workers. J Immunotoxicol. 2016 Sep;13(5):738–744. doi: 10.3109/1547691X.2016.1173135
  • Freeman SC, Malik A, Basit H. Physiology, exocrine gland. Treasure Island (FL). StatPearls; 2022.
  • Ahuja M, Chung WY, Lin WY, et al. Ca2+Signaling in exocrine cells. Cold Spring Harb Perspect Biol. 2020 May 1;12(5):a035279. doi: 10.1101/cshperspect.a035279
  • Inaba T, Hisatsune C, Sasaki Y, et al. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye. PLoS One. 2014;9(6):e99205. doi: 10.1371/journal.pone.0099205
  • Teos LY, Zhang Y, Cotrim AP, et al. IP3R deficit underlies loss of salivary fluid secretion in Sjögren’s syndrome. Sci Rep. 2015 Sep 14;5(1):13953. doi: 10.1038/srep13953
  • Fukuda N, Shirasu M, Sato K, et al. Decreased olfactory mucus secretion and nasal abnormality in mice lacking type 2 and type 3 IP3 receptors. Eur J Neurosci. 2008 May;27(10):2665–2675. doi: 10.1111/j.1460-9568.2008.06240.x
  • Hirata K, Dufour JF, Shibao K, et al. Regulation of Ca(2+) signaling in rat bile duct epithelia by inositol 1,4,5-trisphosphate receptor isoforms. Hepatology. 2002 Aug;36(2):284–296. doi: 10.1053/jhep.2002.34432
  • Shibao K, Hirata K, Robert ME, et al. Loss of inositol 1,4,5-trisphosphate receptors from bile duct epithelia is a common event in cholestasis. Gastroenterology. 2003 Oct;125(4):1175–1187. doi: 10.1016/S0016-5085(03)01201-0
  • Weerachayaphorn J, Amaya MJ, Spirli C, et al. Nuclear factor, erythroid 2-like 2 regulates expression of type 3 inositol 1,4,5-trisphosphate receptor and calcium signaling in cholangiocytes. Gastroenterology. 2015 Jul;149(1):211–222 e10. doi: 10.1053/j.gastro.2015.03.014
  • Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015 Oct;278(4):369–395. doi: 10.1111/joim.12395
  • Tolosa E, Garrido A, Scholz SW, et al. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021 May;20(5):385–397. doi: 10.1016/S1474-4422(21)00030-2
  • Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet. 2005 Jul 15;14(14):2063–2073. doi: 10.1093/hmg/ddi211
  • Liu Y, Ma X, Fujioka H, et al. DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25322–25328. doi: 10.1073/pnas.1906565116
  • Laura M, Pipis M, Rossor AM, et al. Charcot-Marie-Tooth disease and related disorders: an evolving landscape. Curr Opin Neurol. 2019 Oct;32(5):641–650. doi: 10.1097/WCO.0000000000000735
  • Papakostas GI. Major depressive disorder: psychosocial impairment and key considerations in functional improvement. Am J Manag Care. 2009 Dec;15(11 Suppl):S316–21.
  • Wu W, Howard D, Sibille E, et al. Differential and spatial expression meta-analysis of genes identified in genome-wide association studies of depression. Transl Psychiatry. 2021 Jan 4;11(1):8. doi: 10.1038/s41398-020-01127-3
  • Hisatsune C, Yasumatsu K, Takahashi-Iwanaga H, et al. Abnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor. J Biol Chem. 2007 Dec 21;282(51):37225–37231. doi: 10.1074/jbc.M705641200
  • Shindo Y, Kim MR, Miura H, et al. Lrmp/Jaw1 is expressed in sweet, bitter, and umami receptor-expressing cells. Chem Senses. 2010 Feb;35(2):171–177. doi: 10.1093/chemse/bjp097
  • Zhang Y, Hoon MA, Chandrashekar J, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003 Feb 7;112(3):293–301. doi: 10.1016/S0092-8674(03)00071-0
  • Liu WJ, Yang J. Developmental expression of inositol 1, 4, 5-trisphosphate receptor in the post-natal rat cochlea. Eur J Histochem. 2015 Apr 21;59(2):2486. doi: 10.4081/ejh.2015.2486
  • Murillo A, Vera-Estrella R, Barkla BJ, et al. Identification of host cell factors associated with astrovirus replication in caco-2 cells. J Virol. 2015 Oct;89(20):10359–10370. doi: 10.1128/JVI.01225-15
  • Zheng W, Bai X, Zhou Y, et al. Transcriptional ITPR3 as potential targets and biomarkers for human pancreatic cancer. Aging. 2022 May 17;14(10):4425–4444. doi: 10.18632/aging.204080
  • Foulon A, Rybarczyk P, Jonckheere N, et al. Inositol (1,4,5)-trisphosphate receptors in invasive breast cancer: a New prognostic tool? Int J Mol Sci. 2022 Mar 9;23(6):2962. doi: 10.3390/ijms23062962
  • Bunbanjerdsuk S, Vorasan N, Saethang T, et al. Oncoproteomic and gene expression analyses identify prognostic biomarkers for second primary malignancy in patients with head and neck squamous cell carcinoma. Mod Pathol. 2019 Jul;32(7):943–956. doi: 10.1038/s41379-019-0211-2
  • Rodrigues MA, Gomes DA, Cosme AL et al. Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) is overexpressed in cholangiocarcinoma and its expression correlates with S100 calcium-binding protein A4 (S100A4). Biomed Pharmacother. 2022 Jan;145:112403. doi:10.1016/j.biopha.2021.112403
  • Sakakura C, Hagiwara A, Fukuda K, et al. Possible involvement of inositol 1,4,5-trisphosphate receptor type 3 (IP3R3) in the peritoneal dissemination of gastric cancers. Anticancer Res. 2003 Sep-Oct;23(5A):3691–3697.
  • Moy RH, Nguyen A, Loo JM, et al. Functional genetic screen identifies ITPR3/calcium/RELB axis as a driver of colorectal cancer metastatic liver colonization. Dev Cell. 2022 May 9;57(9):1146–1159 e7. doi: 10.1016/j.devcel.2022.04.010
  • Szatkowski C, Parys JB, Ouadid-Ahidouch H, et al. Inositol 1,4,5-trisphosphate-induced Ca2+ signalling is involved in estradiol-induced breast cancer epithelial cell growth. Mol Cancer. 2010 Jun 21;9(1):156. doi: 10.1186/1476-4598-9-156