888
Views
0
CrossRef citations to date
0
Altmetric
Research paper

A systemic analysis of monocarboxylate transporters in ovarian cancer and possible therapeutic interventions

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2273008 | Received 18 May 2023, Accepted 06 Oct 2023, Published online: 07 Nov 2023

References

  • Halestrap AP. The SLC16 gene family - structure, role and regulation in health and disease. Mol Aspects Med. 2013;34(2–3):337–19. doi: 10.1016/j.mam.2012.05.003
  • Fisel P, Schaeffeler E, Schwab M. Clinical and functional relevance of the Monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci. 2018 Jul;11(4):352–364. doi: 10.1111/cts.12551
  • Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022 Sep;7(1):305. doi: 10.1038/s41392-022-01151-3
  • Payen VL, Mina E, Van Hée VF, et al. Monocarboxylate transporters in cancer. Mol Metab. 2020 Mar;33:48–66.
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin Internet. 2021;71(1):7–33. doi: 10.3322/caac.21654
  • Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian cancer. Lancet Internet. 2019;393(10177):1240–1253. doi: 10.1016/S0140-6736(18)32552-2
  • Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019 Jul;69(4):280–304. doi: 10.3322/caac.21559
  • Tyagi K, Mandal S, Roy A. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: a promise towards disease remission. Biochim Biophys Acta Rev Cancer. 2021 Aug;1876(1):188563. doi: 10.1016/j.bbcan.2021.188563
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401–404. doi: 10.1158/2159-8290.CD-12-0095
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioportal. Sci Signal. 2013 Apr;6(269):l1. doi: 10.1126/scisignal.2004088
  • Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 Jul;47(W1):W556–60. doi: 10.1093/nar/gkz430
  • Bartha Á, Győrffy B. Tnmplot.com: a web tool for the Comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. 2021 Mar;22(5):2622. doi: 10.3390/ijms22052622
  • Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical Research (KMplot): development and implementation. J Med Internet Res. 2021 Jul;23(7):e27633. doi: 10.2196/27633
  • Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022 Mar;25:18–27.
  • Ge SX, Jung D, Yao R, et al. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics Internet. 2020 Apr 15;36(8):2628–2629. doi: 10.1093/bioinformatics/btz931
  • Carbon S, Douglass E, Good BM. The gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021 Jan;49(D1):D325–34. doi: 10.1093/nar/gkaa1113
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000 May;25(1):25–29. doi: 10.1038/75556
  • Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res Internet. 2021 Jan 8;49(D1):D545–51. doi: 10.1093/nar/gkaa970
  • Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics Internet. 2013 Jul 15;29(14):1830–1831. doi: 10.1093/bioinformatics/btt285
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan;28(1):27–30. doi: 10.1093/nar/28.1.27
  • Luna A, Elloumi F, Varma S, et al. CellMiner cross-database (CellMinercdb) version 1.2: exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res Internet. 2021 Jan 8;49(D1):D1083–93. doi: 10.1093/nar/gkaa968
  • Wei S, Gao X, Du J, et al. Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics. PLoS One. 2011;6(12):e28797. doi: 10.1371/journal.pone.0028797
  • Bandopadhyay S, Prasad P, Ray U, et al. SIRT6 promotes mitochondrial fission and subsequent cellular invasion in ovarian cancer. FEBS Open Bio Internet. 2022;12(9):1657–1676. doi: 10.1002/2211-5463.13452
  • Hao J, Chen H, Madigan MC, et al. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br J Cancer. 2010 Sep;103(7):1008–1018. doi: 10.1038/sj.bjc.6605839
  • Chen X, Chen X, Liu F, et al. Monocarboxylate transporter 1 is an independent prognostic factor in esophageal squamous cell carcinoma. Oncol Rep. 2019 Apr;41(4):2529–2539. doi: 10.3892/or.2019.6992
  • Rao MS, Van Vleet TR, Ciurlionis R, et al. Comparison of RNA-Seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. Front Genet. 2018;9:636. doi: 10.3389/fgene.2018.00636
  • Rai MF, Tycksen ED, Sandell LJ, et al. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears. J Orthop Res Off Publ Orthop Res Soc. 2018 Jan;36(1):484–497. doi: 10.1002/jor.23661
  • Yuan Z, Li Y, Zhang S, et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer Internet. 2023;22(1):48. doi: 10.1186/s12943-023-01744-8
  • Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, et al. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun Internet. 2020;11(1):5120. doi: 10.1038/s41467-020-18794-x
  • Berger S, Siegert A, Denkert C, et al. Interleukin-10 in serous ovarian carcinoma cell lines. Cancer Immunol Immunother Internet. 2001;50(6):328–333. doi: 10.1007/s002620100196
  • Doherty JR, Yang C, Scott KEN, et al. Blocking lactate export by inhibiting the myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res Internet. 2014 Feb 2;74(3): 908–920. doi: 10.1158/0008-5472.CAN-13-2034
  • Ogura J, Sato T, Higuchi K, et al. Transport mechanisms for the nutritional supplement β-Hydroxy-β-methylbutyrate (HMB) in Mammalian cells. Pharm Res Internet. 2019;36(6):84. doi: 10.1007/s11095-019-2626-3
  • Wang Y, Zhou X, Zou K, et al. Monocarboxylate transporter 4 triggered cell pyroptosis to aggravate intestinal inflammation in inflammatory bowel disease. Front Immunol Internet. 2021;12. doi: 10.3389/fimmu.2021.644862
  • Gardel ML, Schneider IC, Aratyn-Schaus Y, et al. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol. 2010;26(1):315–333. doi: 10.1146/annurev.cellbio.011209.122036
  • Latif A, Chadwick AL, Kitson SJ, et al. Monocarboxylate transporter 1 (MCT1) is an independent prognostic biomarker in endometrial cancer. BMC Clin Pathol. 2017;17(1):27. doi: 10.1186/s12907-017-0067-7
  • Eilertsen M, Andersen S, Al-Saad S, et al. Monocarboxylate transporters 1-4 in NSCLC: MCT1 is an independent prognostic marker for survival. PLoS One. 2014;9(9):e105038. doi: 10.1371/journal.pone.0105038
  • Pértega-Gomes N, Vizcaíno JR, Gouveia C, et al. Monocarboxylate transporter 2 (MCT2) as putative biomarker in prostate cancer. Prostate. 2013 May;73(7):763–769. doi: 10.1002/pros.22620
  • Sohrabi E, Moslemi M, Rezaie E, et al. The tissue expression of MCT3, MCT8, and MCT9 genes in women with breast cancer. Genes Genomics. 2021 Sep;43(9):1065–1077. doi: 10.1007/s13258-021-01116-w
  • Gao H-J, Zhao M-C, Zhang Y-J, et al. Monocarboxylate transporter 4 predicts poor prognosis in hepatocellular carcinoma and is associated with cell proliferation and migration. J Cancer Res Clin Oncol. 2015 Jul;141(7):1151–1162. doi: 10.1007/s00432-014-1888-8
  • Luby A, Alves-Guerra M-C. Targeting metabolism to Control immune responses in cancer and improve checkpoint blockade immunotherapy. Cancers (Basel). 2021 Nov;13(23):5912. doi: 10.3390/cancers13235912
  • Guo C, Huang T, Wang Q-H, et al. Monocarboxylate transporter 1 and monocarboxylate transporter 4 in cancer-endothelial co-culturing microenvironments promote proliferation, migration, and invasion of renal cancer cells. Cancer Cell Int. 2019;19(1):170. doi: 10.1186/s12935-019-0889-8
  • Chandel V, Kumar D. Targeting signalling cross-talk between cancer cells and cancer-associated Fibroblast through Monocarboxylate transporters in head and neck cancer. Anticancer Agents Med Chem. 2021;21(11):1369–1378. doi: 10.2174/1871520620666200721135230
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar;144(5):646–674. doi: 10.1016/j.cell.2011.02.013
  • Pérez-Escuredo J, Van Hée VF, Sboarina M, et al. Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta Mol Cell Res Internet. 2016;1863(10):2481–2497. doi: 10.1016/j.bbamcr.2016.03.013
  • Alves VA, Pinheiro C, Morais-Santos F, et al. Characterization of monocarboxylate transporter activity in hepatocellular carcinoma. World J Gastroenterol. 2014 Sep;20(33):11780–11787. doi: 10.3748/wjg.v20.i33.11780