820
Views
0
CrossRef citations to date
0
Altmetric
Review

Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels

& ORCID Icon
Article: 2273165 | Received 07 Sep 2023, Accepted 07 Oct 2023, Published online: 31 Oct 2023

References

  • Yu FH, Yarov-Yarovoy V, Gutman GA, et al. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev. 2005 Dec;57(4):387–24. doi: 10.1124/pr.57.4.13
  • James ZM, Zagotta WN. Structural insights into the mechanisms of CNBD channel function. J Gen Physiol. 2018 Feb 5;150(2):225–244. doi: 10.1085/jgp.201711898
  • Zufall F, Firestein S, Shepherd GM. Cyclic nucleotide-gated ion channels and sensory transduction in olfactory receptor neurons. Annu Rev Biophys Biomol Struct. 1994;23(1):577–607. doi: 10.1146/annurev.bb.23.060194.003045
  • Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002 Jul;82(3):769–824. doi: 10.1152/physrev.00008.2002.
  • Yau KW, Hardie RC. Phototransduction motifs and variations. Cell. 2009 Oct 16;139(2):246–264. doi: 10.1016/j.cell.2009.09.029
  • Varnum MD, Dai G. Cyclic nucleotide-gated channels. In: Zheng J Trudeau M, editors The handbook of ion channels. Boca Raton: CRC Press; 2015. pp. 361–382.
  • Michalakis S, Becirovic E, Biel M. Retinal cyclic nucleotide-gated channels: from pathophysiology to therapy. Int J Mol Sci. 2018 Mar 7;19(3):749. doi: 10.3390/ijms19030749
  • Gerhardt MJ, Priglinger SG, Biel M, et al. Biology, pathobiology and gene therapy of CNG channel-related retinopathies. Biomedicines. 2023 Feb;11(2):269. doi: 10.3390/biomedicines11020269
  • Barret DCA, Kaupp UB, Marino J. The structure of cyclic nucleotide-gated channels in rod and cone photoreceptors. Trends Neurosci. 2022 Oct;45(10):763–776. doi: 10.1016/j.tins.2022.07.001.
  • Zagotta WN, Siegelbaum SA. Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci. 1996;19(1):235–263. doi: 10.1146/annurev.ne.19.030196.001315
  • Craven KB, Zagotta WN. CNG and HCN channels: two peas, one pod. Annu Rev Physiol. 2006;68(1):375–401. doi: 10.1146/annurev.physiol.68.040104.134728
  • Zimmerman A. Cyclic nucleotide-gated ion channels. In: Sperelakis N, editor. Cell physiology source book. Fourth ed. Cambridge, MA: Academic Press; 2012. pp. 621–632.
  • Codding SJ, Johnson AA, Trudeau MC. Gating and regulation of KCNH (ERG, EAG, and ELK) channels by intracellular domains. Channels. 2020 Jan 1;14(1):294–309. doi: 10.1080/19336950.2020.1816107
  • Santoro B, Shah MM. Hyperpolarization-activated cyclic nucleotide-gated channels as drug targets for neurological disorders. Ann Rev Pharmacol. 2020;60(1):109–131. doi: 10.1146/annurev-pharmtox-010919-023356
  • Saponaro A, Thiel G, Moroni A. Structural and functional approaches to studying cAMP regulation of HCN channels. Biochem Soc Trans. 2021 Dec;49(6):2573–2579. doi: 10.1042/BST20210290.
  • Zagotta WN, Olivier NB, Black KD, et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature. 2003 Sep 11;425(6954):200–205. doi: 10.1038/nature01922
  • Shuart NG, Haitin Y, Camp SS, et al. Molecular mechanism for 3: 1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nat Commun. 2011;2(1):457. doi: 10.1038/ncomms1466
  • Clayton GM, Silverman WR, Heginbotham L, et al. Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel. Cell. 2004 Nov 24;119(5):615–627. doi: 10.1016/j.cell.2004.10.030
  • Chiu PL, Pagel MD, Evans J, et al. The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloK1 at 16 a resolution. Structure. 2007 Sep;15(9):1053–1064. doi: 10.1016/j.str.2007.06.020
  • Altieri SL, Clayton GM, Silverman WR, et al. Structural and energetic analysis of activation by a cyclic nucleotide binding domain. J Mol Biol. 2008 Sep 5;381(3):655–669. doi: 10.1016/j.jmb.2008.06.011
  • Clayton GM, Altieri S, Heginbotham L, et al. Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1511–1515. doi: 10.1073/pnas.0711533105
  • Pessoa J, Fonseca F, Furini S, et al. Determinants of ligand selectivity in a cyclic nucleotide-regulated potassium channel. J Gen Physiol. 2014 Jul;144(1):41–54. doi: 10.1085/jgp.201311145
  • Kowal J, Chami M, Baumgartner P, et al. Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun. 2014;5(1):3106. doi: 10.1038/ncomms4106
  • Li MH, Zhou XY, Wang S, et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature. 2017 Feb 2;542(7639):60–65. doi: 10.1038/nature20819
  • James ZM, Borst AJ, Haitin Y, et al. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4430–4435. doi: 10.1073/pnas.1700248114
  • Kowal J, Biyani N, Chami M, et al. High-Resolution Cryoelectron Microscopy Structure of the Cyclic Nucleotide-Modulated Potassium Channel MloK1 in a Lipid Bilayer. Structure. 2018 Jan 2;26(1):20±. doi: 10.1016/j.str.2017.11.012
  • Rheinberger J, Gao X, Schmidpeter PA, et al. Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. Elife. [2018 Jul 20];7. doi: 10.7554/eLife.39775.
  • Zheng X, Fu Z, Su D, et al. Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel. Nat Struct Mol Biol. 2020 Jul;27(7):625–634. doi: 10.1038/s41594-020-0433-5
  • Xue J, Han Y, Zeng W, et al. Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron. 2021 Apr 21;109(8):1302–1313 e4. doi: 10.1016/j.neuron.2021.02.007
  • Barret DCA, Schertler GFX, Kaupp UB, et al. The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods. Nat Struct Mol Biol. 2022 Jan;29(1):32±. doi: 10.1038/s41594-021-00700-8
  • Gao X, Schmidpeter PAM, Berka V, et al. Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel. Nat Commun. 2022 Nov 14;13(1):6919. doi: 10.1038/s41467-022-34673-z
  • Schmidpeter PAM, Wu D, Rheinberger J, et al. Anionic lipids unlock the gates of select ion channels in the pacemaker family. Nat Struct Mol Biol. 2022 Nov;29(11):1092±. doi: 10.1038/s41594-022-00851-2
  • Xue J, Han Y, Zeng W, et al. Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel. Neuron. 2022 Jan 5;110(1):86–95 e5. doi: 10.1016/j.neuron.2021.10.006
  • Zheng XD, Hu ZS, Li H, et al. Structure of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Struct Mol Biol. 2022 Jan;29(1):40±. doi: 10.1038/s41594-021-00699-y
  • Zheng X, Li H, Hu Z, et al. Structural and functional characterization of an achromatopsia-associated mutation in a phototransduction channel. Commun Biol. 2022 Mar 1;5(1):190. doi: 10.1038/s42003-022-03120-6
  • Barret DCA, Schuster D, Rodrigues MJ, et al. Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel. Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2300309120. doi: 10.1073/pnas.2300309120
  • Hu Z, Zheng X, Yang J. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun. 2023 Jul 18;14(1):4284. doi: 10.1038/s41467-023-39971-8
  • Liao M, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013 Dec 5;504(7478):107–112. doi: 10.1038/nature12822
  • Cao E, Liao M, Cheng Y, et al. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature. 2013 Dec 5;504(7478):113–118. doi: 10.1038/nature12823
  • Zhong H, Molday LL, Molday RS, et al. The heteromeric cyclic nucleotide-gated channel adopts a 3A: 1B stoichiometry. Nature. 2002 Nov 14;420(6912):193–198. doi: 10.1038/nature01201
  • Weitz D, Ficek N, Kremmer E, et al. Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron. 2002 Dec 5;36(5):881–889. doi: 10.1016/S0896-6273(02)01098-X
  • Zheng J, Trudeau MC, Zagotta WN. Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron. 2002 Dec 5;36(5):891–896. doi: 10.1016/S0896-6273(02)01099-1
  • Peng C, Rich ED, Varnum MD. Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron. 2004 May 13;42(3):401–410. doi: 10.1016/S0896-6273(04)00225-9
  • Biel M, Michalakis S. Cyclic nucleotide-gated channels. Handb Exp Pharmacol. 2009;191:111–136.
  • Ding XQ, Matveev A, Singh A, et al. Biochemical characterization of cone cyclic nucleotide-gated (CNG) channel using the infrared fluorescence detection system. Adv Exp Med Biol. 2012;723:769–775.
  • Zhong H, Lai J, Yau KW. Selective heteromeric assembly of cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5509–5513. doi: 10.1073/pnas.0931279100
  • Barros F, de la Pena P, Dominguez P, et al. The EAG voltage-dependent K+ channel subfamily: similarities and differences in structural Organization and gating. Front Pharmacol. [2020 Apr 15; 11];11. doi: 10.3389/fphar.2020.00411.
  • Schunke S, Stoldt M. Structural snapshot of cyclic nucleotide binding domains from cyclic nucleotide-sensitive ion channels. Biol Chem. 2013 Nov;394(11):1439–1451. doi: 10.1515/hsz-2013-0228.
  • Fesenko EE, Kolesnikov SS, Lyubarsky AL. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985 Jan 24-30;313(6000):310–313. doi: 10.1038/313310a0
  • Nakamura T, Gold GH. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature. 1987 Jan-Feb 4-29;325(6103):442–444.
  • Kaupp UB, Niidome T, Tanabe T, et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature. 1989 Dec 14;342(6251):762–766. doi: 10.1038/342762a0
  • Dhallan RS, Yau KW, Schrader KA, et al. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature. 1990 Sep 13;347(6289):184–187. doi: 10.1038/347184a0
  • Luhring H, Hanke W, Simmoteit R, et al. Cation selectivity of the cGMP-gated channel of Mammalian rod photoreceptors. Nato Adv Sci I A-Lif. 1990;194:169–173.
  • Menini A. Currents carried by monovalent cations through cyclic GMP-activated channels in excised patches from salamander rods. J Physiol. 1990 May;424(1):167–185. doi: 10.1113/jphysiol.1990.sp018061.
  • Frings S, Lynch JW, Lindemann B. Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol. 1992 Jul;100(1):45–67. doi: 10.1085/jgp.100.1.45.
  • Picones A, Korenbrot JI. Permeation and interaction of monovalent cations with the cGMP-gated channel of cone photoreceptors. J Gen Physiol. 1992 Oct;100(4):647–673. doi: 10.1085/jgp.100.4.647.
  • Bonigk W, Altenhofen W, Muller F, et al. Rod and cone photoreceptor cells express distinct genes for cGMP-gated channels. Neuron. 1993 May;10(5):865–877. doi: 10.1016/0896-6273(93)90202-3
  • Goulding EH, Tibbs GR, Liu D, et al. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature. 1993 Jul 1;364(6432):61–64. doi: 10.1038/364061a0
  • Korschen HG, Illing M, Seifert R, et al. A 240 kDa protein represents the complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron. 1995 Sep;15(3):627–636. doi: 10.1016/0896-6273(95)90151-5
  • Root MJ, MacKinnon R. Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron. 1993 Sep;11(3):459–466. doi: 10.1016/0896-6273(93)90150-P.
  • Eismann E, Muller F, Heinemann SH, et al. A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1109–1113. doi: 10.1073/pnas.91.3.1109
  • Sesti F, Nizzari M, Torre V. Effect of changing temperature on the ionic permeation through the cyclic GMP-gated channel from vertebrate photoreceptors. Biophys J. 1996 Jun;70(6):2616–2639. doi: 10.1016/S0006-3495(96)79832-6.
  • Martinez-Francois JR, Xu Y, Lu Z. Mutations reveal voltage gating of CNGA1 channels in saturating cGMP. J Gen Physiol. 2009 Aug;134(2):151–164. doi: 10.1085/jgp.200910240.
  • Kurahashi T, Shibuya T. Ca-2±Dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res. 1990 May 7;515(1–2):261–268. doi: 10.1016/0006-8993(90)90605-B
  • Frings S, Seifert R, Godde M, et al. Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron. 1995 Jul;15(1):169–179. doi: 10.1016/0896-6273(95)90074-8
  • Picones A, Korenbrot JI. Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors. Biophys J. 1995 Jul;69(1):120–127. doi: 10.1016/S0006-3495(95)79881-2.
  • Finn JT, Solessio EC, Yau KW. A cGMP-gated cation channel in depolarizing photoreceptors of the lizard parietal eye. Nature. 1997 Feb 27;385(6619):815–819. doi: 10.1038/385815a0
  • Hackos DH, Korenbrot JI. Divalent cation selectivity is a function of gating in native and recombinant cyclic nucleotide-gated ion channels from retinal photoreceptors. J Gen Physiol. 1999 Jun;113(6):799–818. doi: 10.1085/jgp.113.6.799.
  • Colamartino G, Menini A, Torre V. Blockage and permeation of divalent cations through the cyclic GMP-activated channel from tiger salamander retinal rods. J Physiol. 1991;440(1):189–206. doi: 10.1113/jphysiol.1991.sp018703
  • Park CS, MacKinnon R. Divalent cation selectivity in a cyclic nucleotide-gated ion channel. Biochemistry. 1995 Oct 17;34(41):13328–13333. doi: 10.1021/bi00041a008
  • Morrill JA, MacKinnon R. Isolation of a single carboxyl-carboxylate proton binding site in the pore of a cyclic nucleotide-gated channel. J Gen Physiol. 1999 Jul;114(1):71–83. doi: 10.1085/jgp.114.1.71.
  • Seifert R, Eismann E, Ludwig J, et al. Molecular determinants of a Ca2±binding site in the pore of cyclic nucleotide-gated channels: S5/S6 segments control affinity of intrapore glutamates. EMBO J. 1999 Jan 4;18(1):119–130. doi: 10.1093/emboj/18.1.119
  • Baylor DA, Lamb TD, Yau KW. Responses of retinal rods to single photons. J Physiol. 1979 Mar;288(1):613–634. doi: 10.1113/jphysiol.1979.sp012716.
  • Ohyama T, Hackos DH, Frings S, et al. Fraction of the dark current carried by Ca2+ through cGMP-gated ion channels of intact rod and cone photoreceptors. J General Physiol. 2000 Dec;116(6):735–753. doi: 10.1085/jgp.116.6.735
  • Flynn GE, Johnson JP Jr., Zagotta WN. Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nat Rev Neurosci. 2001 Sep;2(9):643–651. doi: 10.1038/35090015.
  • Flynn GE, Zagotta WN. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron. 2001 Jun;30(3):689–698. doi: 10.1016/S0896-6273(01)00324-5.
  • Contreras JE, Holmgren M. Access of quaternary ammonium blockers to the internal pore of cyclic nucleotide-gated channels: implications for the location of the gate. J Gen Physiol. 2006 May;127(5):481–494. doi: 10.1085/jgp.200509440.
  • Contreras JE, Srikumar D, Holmgren M. Gating at the selectivity filter in cyclic nucleotide-gated channels. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3310–3314. doi: 10.1073/pnas.0709809105
  • Sun ZP, Akabas MH, Goulding EH, et al. Exposure of residues in the cyclic nucleotide-gated channel pore: P region structure and function in gating. Neuron. 1996 Jan;16(1):141–149. doi: 10.1016/S0896-6273(00)80031-8
  • Becchetti A, Roncaglia P. Cyclic nucleotide-gated channels: intra- and extracellular accessibility to Cd2+ of substituted cysteine residues within the P-loop. Pflugers Arch - Eur J Physiol. 2000 Aug;440(4):556–565. doi: 10.1007/s004240000324.
  • Kim DM, Nimigean CM. Voltage-gated potassium channels: a structural examination of selectivity and gating. Cold Spring Harb Perspect Biol. 2016 May 2;8(5):a029231. doi: 10.1101/cshperspect.a029231
  • Kolesnikov SS, Zhainazarov AB, Kosolapov AV. Cyclic nucleotide-activated channels in the frog olfactory receptor plasma membrane. FEBS Lett. 1990 Jun 18;266(1–2):96–98. doi: 10.1016/0014-5793(90)81515-P
  • Haynes LW. Block of the cyclic GMP-gated channel of vertebrate rod and cone photoreceptors by l-cis-diltiazem. J Gen Physiol. 1992 Nov;100(5):783–801. doi: 10.1085/jgp.100.5.783.
  • Quandt FN, Nicol GD, Schnetkamp PP. Voltage-dependent gating and block of the cyclic-GMP-dependent current in bovine rod outer segments. Neuroscience. 1991;42(3):629–638. doi: 10.1016/0306-4522(91)90032-J
  • McLatchie LM, Matthews HR. Voltage-dependent block by L-cis-diltiazem of the cyclic GMP-activated conductance of salamander rods. Proc Biol Sci. 1319 1992 Feb 22;247:113–119.
  • Chen TY, Peng YW, Dhallan RS, et al. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature. 1993 Apr 22;362(6422):764–767. doi: 10.1038/362764a0
  • Arcangeletti M, Marchesi A, Mazzolini M, et al. Multiple mechanisms underlying rectification in retinal cyclic nucleotide-gated (CNGA1) channels. Physiol Rep. 2013 Nov;1(6):e00148. doi: 10.1002/phy2.148
  • Long SB, Tao X, Campbell EB, et al. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature. 2007 Nov 15;450(7168):376–382. doi: 10.1038/nature06265
  • Long SB, Campbell EB, Mackinnon R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science. 2005 Aug 5;309(5736):903–908. doi: 10.1126/science.1116270
  • Kohl S, Marx T, Giddings I, et al. Total color blindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet. 1998 Jul;19(3):257–259. doi: 10.1038/935
  • Wissinger B, Gamer D, Jagle H, et al. CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet. 2001 Oct;69(4):722–737. doi: 10.1086/323613
  • Nishiguchi KM, Sandberg MA, Gorji N, et al. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum Mutat. 2005 Mar;25(3):248–258. doi: 10.1002/humu.20142
  • Ahuja Y, Kohl S, Traboulsi EI. CNGA3 mutations in two United Arab Emirates families with achromatopsia. Mol Vis. 2008 Jul 10;14(152–54):1293–1297.
  • Azam M, Collin RWJ, Shah STA, et al. Novel CNGA3 and CNGB3 mutations in two Pakistani families with achromatopsia. Mol Vis. 2010 Apr 29;16(87):774–781.
  • Burkard M, Kohl S, Kratzig T, et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J Clin Invest. 2018 Dec 3;128(12):5663–5675. doi: 10.1172/JCI96098
  • Faillace MP, Bernabeu RO, Korenbrot JI. Cellular processing of cone photoreceptor cyclic GMP-gated ion channels: a role for the S4 structural motif. J Biol Chem. 2004 May 21;279(21):22643–22653. doi: 10.1074/jbc.M400035200
  • Liu C, Varnum MD. Functional consequences of progressive cone dystrophy-associated mutations in the human cone photoreceptor cyclic nucleotide-gated channel CNGA3 subunit. Am J Physiol Cell Physiol. 2005 Jul;289(1):C187–98. doi: 10.1152/ajpcell.00490.2004.
  • Muraki-Oda S, Toyoda F, Okada A, et al. Functional analysis of rod monochromacy-associated missense mutations in the CNGA3 subunit of the cone photoreceptor cGMP-gated channel. Biochem Biophys Res Commun. 2007 Oct 12;362(1):88–93. doi: 10.1016/j.bbrc.2007.07.152
  • Brams M, Kusch J, Spurny R, et al. Family of prokaryote cyclic nucleotide-modulated ion channels. P Natl Acad Sci USA. 2014 May 27;111(21):7855–7860. doi: 10.1073/pnas.1401917111
  • Schmidpeter PAM, Gao XL, Uphadyay V, et al. Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK. J General Physiol. 2018 Jun;150(6):821–834. doi: 10.1085/jgp.201812023
  • Morgan JLW, Evans EGB, Zagotta WN. Functional characterization and optimization of a bacterial cyclic nucleotide-gated channel. J Biol Chem. 2019 May 3;294(18):7503–7515. doi: 10.1074/jbc.RA119.007699
  • Gordon SE, Zagotta WN. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron. 1995 Jan;14(1):177–183. doi: 10.1016/0896-6273(95)90252-X.
  • Gordon SE, Zagotta WN. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron. 1995 Apr;14(4):857–864. doi: 10.1016/0896-6273(95)90229-5.
  • Brown RL, Snow SD, Haley TL. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys J. 1998 Aug;75(2):825–833. doi: 10.1016/S0006-3495(98)77571-X.
  • Zong X, Zucker H, Hofmann F, et al. Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J. 1998 Jan 15;17(2):353–362. doi: 10.1093/emboj/17.2.353
  • Paoletti P, Young EC, Siegelbaum SA. C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating. J Gen Physiol. 1999 Jan;113(1):17–34. doi: 10.1085/jgp.113.1.17.
  • Zhou L, Olivier NB, Yao H, et al. A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization. Neuron. 2004 Dec 2;44(5):823–834. doi: 10.1016/j.neuron.2004.11.012
  • Hsu YT, Molday RS. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature. 1993 Jan 7;361(6407):76–79. doi: 10.1038/361076a0
  • Haynes LW, Stotz SC. Modulation of rod, but not cone, cGMP-gated photoreceptor channels by calcium-calmodulin. Vis Neurosci. 1997 Mar-Apr;14(2):233–239. doi: 10.1017/S0952523800011378.
  • Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. J Gen Physiol. 2012 Jan;139(1):31–56. doi: 10.1085/jgp.201110654.
  • Bej A, Ames JB. NMR structures of calmodulin bound to two Separate Regulatory sites in the retinal cyclic nucleotide-gated channel. Biochemistry. 2022 Sep 20;61(18):1955–1965. doi: 10.1021/acs.biochem.2c00378
  • Weitz D, Zoche M, Muller F, et al. Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the beta-subunit. EMBO J. 1998 Apr 15;17(8):2273–2284. doi: 10.1093/emboj/17.8.2273
  • Crary JI, Dean DM, Nguitragool W, et al. Mechanism of inhibition of cyclic nucleotide-gated ion channels by diacylglycerol. J Gen Physiol. 2000 Dec;116(6):755–768. doi: 10.1085/jgp.116.6.755
  • Womack KB, Gordon SE, He F, et al. Do phosphatidylinositides modulate vertebrate phototransduction? J Neurosci. 2000 Apr 15;20(8):2792–2799. doi: 10.1523/JNEUROSCI.20-08-02792.2000
  • Spehr M, Wetzel CH, Hatt H, et al. 3-phosphoinositides modulate cyclic nucleotide signaling in olfactory receptor neurons. Neuron. 2002 Feb 28;33(5):731–739. doi: 10.1016/S0896-6273(02)00610-4
  • Zhainazarov AB, Spehr M, Wetzel CH, et al. Modulation of the olfactory CNG channel by Ptdlns(3,4,5)P3. J Membr Biol. 2004 Sep 1;201(1):51–57. doi: 10.1007/s00232-004-0707-4
  • Bright SR, Rich ED, Varnum MD. Regulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3,4,5-trisphosphate. Mol Pharmacol. 2007 Jan;71(1):176–183. doi: 10.1124/mol.106.026401.
  • Dai G, Peng C, Liu C, et al. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides. J Gen Physiol. 2013 Apr;141(4):413–430. doi: 10.1085/jgp.201210944
  • Dai G, Sherpa T, Varnum MD. Alternative splicing governs cone cyclic nucleotide gated (CNG) channel sensitivity to regulation by Phosphoinositides. J Biol Chem. 2014 May 9;289(19):13680–13690. doi: 10.1074/jbc.M114.562272
  • Lee CH, MacKinnon R. Structures of the human HCN1 hyperpolarization-activated channel. Cell. 2017 Jan 12;168(1–2):111–120 e11. doi: 10.1016/j.cell.2016.12.023
  • Lee CH, MacKinnon R. Voltage sensor movements during hyperpolarization in the HCN channel. Cell. 2019 Dec 12;179(7):1582–1589 e7. doi: 10.1016/j.cell.2019.11.006
  • Saponaro A, Bauer D, Giese MH, et al. Gating movements and ion permeation in HCN4 pacemaker channels. Molecular Cell. 2021 Jul 15;81(14):2929±. doi: 10.1016/j.molcel.2021.05.033
  • Kohl S, Jagle H, Wissinger B, et al. Achromatopsia. In: Adam M, Ardinger H, and Pagon R, editors. GeneReviews [Internet]. Seattle, WA: University of Washington; 2004 [Updated 2018]. p. 1–25.
  • Bonigk W, Bradley J, Muller F, et al. The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J Neurosci. 1999 Jul 1;19(13):5332–5347. doi: 10.1523/JNEUROSCI.19-13-05332.1999
  • Zheng J, Zagotta WN. Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron. 2004 May 13;42(3):411–421. doi: 10.1016/S0896-6273(04)00253-3
  • Bradley J, Li J, Davidson N, et al. Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8890–8894. doi: 10.1073/pnas.91.19.8890
  • Liman ER, Buck LB. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron. 1994 Sep;13(3):611–621. doi: 10.1016/0896-6273(94)90029-9.
  • Sautter A, Zong X, Hofmann F, et al. An isoform of the rod photoreceptor cyclic nucleotide-gated channel beta subunit expressed in olfactory neurons. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4696–4701. doi: 10.1073/pnas.95.8.4696
  • Ruiz ML, Karpen JW. Single cyclic nucleotide-gated channels locked in different ligand-bound states. Nature. 1997 Sep 25;389(6649):389–392. doi: 10.1038/38744
  • Liu DT, Tibbs GR, Paoletti P, et al. Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron. 1998 Jul;21(1):235–248. doi: 10.1016/S0896-6273(00)80530-9
  • Li J, Lester HA. Single-channel kinetics of the rat olfactory cyclic nucleotide-gated channel expressed in xenopus oocytes. Mol Pharmacol. 1999 May;55(5):883–893.
  • Ruiz M, Karpen JW. Opening mechanism of a cyclic nucleotide-gated channel based on analysis of single channels locked in each liganded state. J Gen Physiol. 1999 Jun;113(6):873–895. doi: 10.1085/jgp.113.6.873.
  • Nache V, Schulz E, Zimmer T, et al. Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative. J Physiol. 2005 Nov 15;569(Pt 1):91–102. doi: 10.1113/jphysiol.2005.092304
  • Biskup C, Kusch J, Schulz E, et al. Relating ligand binding to activation gating in CNGA2 channels. Nature. 2007 Mar 22;446(7134):440–443. doi: 10.1038/nature05596
  • Cukkemane A, Seifert R, Kaupp UB. Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci. 2011 Jan;36(1):55–64. doi: 10.1016/j.tibs.2010.07.004.
  • Schirmeyer J, Hummert S, Eick T, et al. Thermodynamic profile of mutual subunit control in a heteromeric receptor. P Natl Acad Sci USA. 2021 Jul 27;118(30). doi: 10.1073/pnas.2100469118
  • Schirmeyer J, Eick T, Schulz E, et al. Subunit promotion energies for channel opening in heterotetrameric olfactory CNG channels. PLoS Comput Biol. 2022 Aug;18(8):e1010376. doi: 10.1371/journal.pcbi.1010376