927
Views
0
CrossRef citations to date
0
Altmetric
Review

Transient receptor potential vanilloid type 1: cardioprotective effects in diabetic models

, , , &
Article: 2281743 | Received 05 May 2023, Accepted 17 Oct 2023, Published online: 20 Nov 2023

References

  • Fernandez-Twinn DS, Hjort L, Novakovic B, et al. Intrauterine programming of obesity and type 2 diabetes. Diabetologia. 2019;62(10):1789–18. doi: 10.1007/s00125-019-4951-9
  • Strain WD, Paldánius PM. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol. 2018;17(1):57. doi: 10.1186/s12933-018-0703-2
  • Liu Z, Fu C, Wang W, et al. Prevalence of chronic complications of type 2 diabetes mellitus in outpatients - a cross-sectional hospital based survey in urban China. Health Qual Life Outcomes. 2010;8(1):62. doi: 10.1186/1477-7525-8-62
  • Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J. 2015;36(27):1718–1727. doi: 10.1093/eurheartj/ehv134
  • Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34(1):29–34. doi: 10.1016/0002-9149(74)90089-7
  • Matsue Y, Suzuki M, Nakamura R, et al. Prevalence and prognostic implications of pre-diabetic state in patients with heart failure. Circ J. 2011;75(12):2833–2839. doi: 10.1253/circj.CJ-11-0754
  • Gustafsson I, Brendorp B, Seibæk M, et al. Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J Am Coll Cardiol. 2004;43(5):771–777. doi: 10.1016/j.jacc.2003.11.024
  • Miki T, Yuda S, Kouzu H, et al. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18(2):149–166. doi: 10.1007/s10741-012-9313-3
  • Nichols GA, Gullion CM, Koro CE, et al. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–1884. doi: 10.2337/diacare.27.8.1879
  • Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602. doi: 10.1016/0002-9149(72)90595-4
  • Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–638. doi: 10.1161/CIRCRESAHA.117.311586
  • Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. Journal Of Physiology. 2020;598(14):2977–2993. doi: 10.1113/JP276747
  • Penpargkul S, Fein F, Sonnenblick, EH, et al. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol. 1981;13(3):303–309. doi: 10.1016/0022-2828(81)90318-7
  • Trost SU, Belke DD, Bluhm WF, et al. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes. 2002;51(4):1166–1171. doi: 10.2337/diabetes.51.4.1166
  • Westermeier F, Riquelme JA, Pavez M, et al. New molecular insights of insulin in diabetic cardiomyopathy. Front Physiol. 2016;7:125. doi: 10.3389/fphys.2016.00125
  • Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res. 2020;126(11):1501–1525. doi: 10.1161/CIRCRESAHA.120.315913
  • Cai L, Kang YJ. Cell death and diabetic cardiomyopathy. Cardiovasc Toxicol. 2003;3(3):219–228. doi: 10.1385/CT:3:3:219
  • Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144–153. doi: 10.1038/nrendo.2015.216
  • Boyer JK, Thanigaraj S, Schechtman KB, et al. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93(7):870–875. doi: 10.1016/j.amjcard.2003.12.026
  • Zabalgoitia M, Ismaeil MF, Anderson L, et al. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol. 2001;87(3):320–323. doi: 10.1016/S0002-9149(00)01366-7
  • Cherney DZ, Odutayo A, Aronson R, et al. Sodium glucose cotransporter-2 inhibition and cardiorenal protection: JACC review Topic of the Week. J Am Coll Cardiol. 2019;74(20):2511–2524. doi: 10.1016/j.jacc.2019.09.022
  • Joubert M, Jagu B, Montaigne D, et al. The Sodium–Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Cardiomyopathy in a Diabetic Lipodystrophic Mouse Model. Diabetes. 2017;66(4):1030–1040. doi: 10.2337/db16-0733
  • Qin S-L, Liu S-L, Wang R-R. [Protective effect of capsaicin on against myocardial ischemia-reperfusion injury of rat in vivo]. Sichuan Da Xue Xue Bao. Yi Xue Ban = Journal of Sichuan University. Med Sci Ed. 2008;39(4):550–554.
  • Szallasi A, Cortright DN, Blum CA, et al. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6(5):357–372. doi: 10.1038/nrd2280
  • Tominaga M, Tominaga T. Structure and function of TRPV1. Pflugers Archiv. European J Physiology. 2005;451(1):143–150. doi: 10.1007/s00424-005-1457-8
  • Premkumar LS, Abooj M. TRP channels and analgesia. Life Sci. 2013;92(8–9):415–424. doi: 10.1016/j.lfs.2012.08.010
  • Li L, Chen C, Chiang C, et al. The impact of TRPV1 on cancer pathogenesis and therapy: a systematic review. Int J Biol Sci. 2021;17(8):2034–2049. doi: 10.7150/ijbs.59918
  • Zhang C, Ye L, Zhang Q, et al. The role of TRPV1 channels in atherosclerosis. channels (Austin, Tex. Channels. 2020;14(1):141–150. doi: 10.1080/19336950.2020.1747803
  • Hurt CM, Lu Y, Stary M, et al. Transient Receptor Potential Vanilloid 1 Regulates Mitochondrial Membrane Potential and Myocardial Reperfusion Injury. J Am Heart Assoc. 2016;5(9). doi: 10.1161/JAHA.116.003774
  • Yoshie K, Rajendran, PS, Massoud L, et al. Cardiac TRPV1 afferent signaling promotes arrhythmogenic ventricular remodeling after myocardial infarction. JCI Insight. 2020;5(3). doi: 10.1172/jci.insight.124477
  • Zahner MR, Li D-P, Chen S-R, et al. Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. Journal Of Physiology. 2003;551(2):515–523. doi: 10.1113/jphysiol.2003.048207
  • Hoebart C, Rojas‐Galvan, NS, Ciotu, CI, et al. No functional TRPA1 in cardiomyocytes. Acta Physiol (Oxf). 2021;232(4):e13659. doi: 10.1111/apha.13659
  • Hong J, Lisco AM, Rudebush TL, et al. Identification of Cardiac Expression Pattern of Transient Receptor Potential Vanilloid Type 1 (TRPV1) Receptor using a Transgenic Reporter Mouse Model. Neurosci lett. 2020;737:135320. doi: 10.1016/j.neulet.2020.135320
  • Andrei SR, Sinharoy P, Bratz IN, et al. TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: co-localization at z-discs, costameres and intercalated discs. channels (Austin, Tex. Channels. 2016;10(5):395–409. doi: 10.1080/19336950.2016.1185579
  • Bizino MB, Jazet IM, Westenberg JJM, et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc Diabetol. 2019;18(1):55. doi: 10.1186/s12933-019-0857-6
  • Ching L-C, Chen C-Y, Su K-H, et al. Implication of AMP-activated protein kinase in transient receptor potential vanilloid type 1-mediated activation of endothelial nitric oxide synthase. molecular medicine (Cambridge, Mass. 2012;18(5):805–815. doi: 10.2119/molmed.2011.00461
  • Wang Y, Cui L, Xu H, et al. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway. Atherosclerosis. 2017;260:13–19. doi: 10.1016/j.atherosclerosis.2017.03.016
  • Ma L, Zhong J, Zhao Z, et al. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis. Cardiovasc Res. 2011;92(3):504–513. doi: 10.1093/cvr/cvr245
  • Luo D, Li W, Xie C, et al. Capsaicin attenuates arterial calcification through promoting SIRT6-mediated deacetylation and degradation of Hif1α (hypoxic-inducible factor-1 alpha). Hypertension. 2022;79(5):906–917. Hypertension (Dallas, Tex. : 1979). doi: 10.1161/HYPERTENSIONAHA.121.18778
  • Parpaite T, Cardouat G, Mauroux M, et al. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells. Pflugers Archiv. Pflugers Arch - Eur J Physiol. 2016;468(1):111–130. doi: 10.1007/s00424-015-1704-6
  • Sun Z, Han J, Zhao W, et al. TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction. Int J Mol Sci. 2014;15(10):18362–18380. doi: 10.3390/ijms151018362
  • Gao F, Liang Y, Wang X, et al. TRPV1 activation attenuates high-salt diet-induced cardiac hypertrophy and fibrosis through PPAR-δ upregulation. PPAR Res. 2014;2014:1–12. doi: 10.1155/2014/491963
  • Lang H, Li Q, Yu H, et al. Activation of TRPV1 attenuates high salt-induced cardiac hypertrophy through improvement of mitochondrial function. Br J Pharmacol. 2015;172(23):5548–5558. doi: 10.1111/bph.12987
  • Horton JS, Shiraishi T, Alfulaij N, et al. TRPV1 is a component of the atrial natriuretic signaling complex, and using orally delivered antagonists, presents a valid therapeutic target in the longitudinal reversal and treatment of cardiac hypertrophy and heart failure. Channels (Austin, Tex). 2019;13(1):1–16. doi: 10.1080/19336950.2018.1547611
  • Wei J, Lin J, Zhang J, et al. TRPV1 activation mitigates hypoxic injury in mouse cardiomyocytes by inducing autophagy through the AMPK signaling pathway. Am J Physiol Cell Physiol. 2020;318(5):C1018–C1029. doi: 10.1152/ajpcell.00161.2019
  • Zhong B, Rubinstein J, Ma S, et al. Genetic ablation of TRPV1 exacerbates pressure overload-induced cardiac hypertrophy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie. 2018;99:261–270. doi: 10.1016/j.biopha.2018.01.065
  • Scotland RS, Chauhan S, Davis C, et al. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction. Circ Res. 2004;95(10):1027–1034. doi: 10.1161/01.RES.0000148633.93110.24
  • Hoover DB. Effects of capsaicin on release of substance P-like immunoreactivity and physiological parameters in isolated perfused guinea-pig heart. Eur J Pharmacol. 1987;141(3):489–492. doi: 10.1016/0014-2999(87)90571-1
  • Manzini S, Perretti F, de Benedetti L, et al. A comparison of bradykinin- and capsaicin-induced myocardial and coronary effects in isolated perfused heart of guinea-pig: involvement of substance P and calcitonin gene-related peptide release. Br J Pharmacol. 1989;97(2):303–312. doi: 10.1111/j.1476-5381.1989.tb11955.x
  • Szabados T, Gömöri K, Pálvölgyi L, et al. Capsaicin-Sensitive sensory nerves and the TRPV1 ion channel in cardiac Physiology and pathologies. Int J Mol Sci. 2020;21(12):4472. doi: 10.3390/ijms21124472
  • Li J, Zhao H, Supowit SC, et al. Activation of the renin–angiotensin system in α-calcitonin gene-related peptide/calcitonin gene knockout mice. J Hypertens. 2004;22(7):1345–1349. doi: 10.1097/01.hjh.0000125409.50839.f1
  • Wang L, Wang DH. TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation. 2005;112(23):3617–3623. doi: 10.1161/CIRCULATIONAHA.105.556274
  • Xiong S, Wang P, Ma L, et al. Ameliorating endothelial mitochondrial dysfunction restores coronary function via Transient receptor potential vanilloid 1–mediated protein kinase A/Uncoupling protein 2 pathway. Hypertension (Dallas, Tex. : 1979). 2016;67(2):451–460. doi: 10.1161/HYPERTENSIONAHA.115.06223
  • McCarty MF, DiNicolantonio JJ, O’Keefe JH. Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart. 2015;2(1):e000262. doi: 10.1136/openhrt-2015-000262
  • Doroshow JH, Locker GY, Myers CE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Investig. 1980;65(1):128–135. doi: 10.1172/JCI109642
  • Chen Y, Saari JT, Kang YJ. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Radic Biol Med. 1994;17(6):529–536. doi: 10.1016/0891-5849(94)90092-2
  • Huynh K, Bernardo BC, McMullen JR, et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375–415. doi: 10.1016/j.pharmthera.2014.01.003
  • Faria A, Persaud SJ. Cardiac oxidative stress in diabetes: mechanisms and therapeutic potential. Pharmacol Ther. 2017;172:50–62. doi: 10.1016/j.pharmthera.2016.11.013
  • Hamblin M, Friedman DB, Hill S, et al. Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J Mol Cell Cardiol. 2007;42(4):884–895. doi: 10.1016/j.yjmcc.2006.12.018
  • Di Filippo C, Marfella R, Cuzzocrea S, et al. Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes. 2005;54(3):803–810. doi: 10.2337/diabetes.54.3.803
  • D’Amario D, Migliaro S, Borovac JA, et al. Microvascular dysfunction in heart failure with preserved ejection fraction. Front Physiol. 2019;10:1347. doi: 10.3389/fphys.2019.01347
  • Gambardella J, Sorriento D, Ciccarelli M, et al. Functional role of mitochondria in Arrhythmogenesis. Adv Exp Med Biol. 2017;982:191–202.
  • Aboumsallem JP, Muthuramu I, Mishra M, et al. Effective treatment of diabetic cardiomyopathy and heart failure with reconstituted HDL (Milano) in mice. Int J Mol Sci. 2019;20(6):1273. doi: 10.3390/ijms20061273
  • Moukdar F, Robidoux J, Lyght O, et al. Reduced antioxidant capacity and diet-induced atherosclerosis in uncoupling protein-2-deficient mice. J Lipid Res. 2009;50(1):59–70. doi: 10.1194/jlr.M800273-JLR200
  • Tian XY, Wong WT, Xu A, et al. Uncoupling protein-2 protects endothelial function in diet-induced obese mice. Circ Res. 2012;110(9):1211–1216. doi: 10.1161/CIRCRESAHA.111.262170
  • Dhamrait SS, et al. ?Cardiovascular risk in healthy men and markers of oxidative stress in diabetic men are associated with common variation in the gene for uncoupling protein 2. Eur Heart J. 2004;25(6):468–475. doi: 10.1016/j.ehj.2004.01.007
  • Li L, Chen J, Ni Y, et al. TRPV1 activation prevents nonalcoholic fatty liver through UCP2 upregulation in mice. Pflugers Archiv. European J Physiology. 2012;463(5):727–732. doi: 10.1007/s00424-012-1078-y
  • Lee M-S, Kim, CT, Kim, IH, et al. Effects of capsaicin on lipid catabolism in 3T3-L1 adipocytes. Phytother Res. 2011;25(6):935–939. doi: 10.1002/ptr.3339
  • Sun J, Pu Y, Wang P, et al. TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction. Cardiovasc Diabetol. 2013;12(1):69. doi: 10.1186/1475-2840-12-69
  • Chen J, Zhang Z, Cai L. Diabetic cardiomyopathy and its prevention by nrf2: current status. Diabetes & Metabolism Journal. 2014;38(5):337–345. doi: 10.4093/dmj.2014.38.5.337
  • He X, Kan H, Cai L, et al. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol. 2009;46(1):47–58. doi: 10.1016/j.yjmcc.2008.10.007
  • Tan Y, Ichikawa T, Li J, et al. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress–induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes. 2011;60(2):625–633. doi: 10.2337/db10-1164
  • Wang Y, Sun W, Du B, et al. Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB. Am J Physiol Heart Circ Physiol. 2013;304(4):H567–H578. doi: 10.1152/ajpheart.00650.2012
  • Velmurugan GV, Sundaresan NR, Gupta MP, et al. Defective Nrf2-dependent redox signalling contributes to microvascular dysfunction in type 2 diabetes. Cardiovasc Res. 2013;100(1):143–150. doi: 10.1093/cvr/cvt125
  • Xu Z, Wei Y, Gong J, et al. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia. 2014;57(1):204–213. doi: 10.1007/s00125-013-3093-8
  • Lv Z, Xu X, Sun Z, et al. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis. 2021;12(6):504. doi: 10.1038/s41419-021-03792-8
  • Flammer AJ, Anderson T, Celermajer DS, et al. The assessment of endothelial function: from research into clinical practice. Circulation. Circulation. 2012;126(6):753–767. doi: 10.1161/CIRCULATIONAHA.112.093245
  • Kitta Y, Obata J-E, Nakamura T, et al. Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. J Am Coll Cardiol. 2009;53(4):323–330. doi: 10.1016/j.jacc.2008.08.074
  • Moraes RDA, Webb RC, Silva DF. Vascular dysfunction in diabetes and obesity: focus on TRP channels. Front Physiol. 2021;12:645109. doi: 10.3389/fphys.2021.645109
  • Li X, Hou J, Du J, et al. Potential Protective Mechanism in the Cardiac Microvascular Injury. Hypertension. 2018;72(1):116–127. Hypertension (Dallas, Tex. : 1979). doi: 10.1161/HYPERTENSIONAHA.118.11035
  • Zhou Y, Wang X, Guo L, et al. TRPV1 activation inhibits phenotypic switching and oxidative stress in vascular smooth muscle cells by upregulating PPARα. Biochem Biophys Res Commun. 2021;545:157–163. doi: 10.1016/j.bbrc.2021.01.072
  • Zhu S-L, Wang M-L, He Y-T, et al. Capsaicin ameliorates intermittent high glucose-mediated endothelial senescence via the TRPV1/SIRT1 pathway. Phytomedicine. 2022;100:154081. doi: 10.1016/j.phymed.2022.154081
  • Frieler RA, Mortensen RM. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation. 2015;131(11):1019–1030. doi: 10.1161/CIRCULATIONAHA.114.008788
  • Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. 2015;116(7):1254–1268. doi: 10.1161/CIRCRESAHA.116.302317
  • Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112. doi: 10.1161/CIRCRESAHA.116.303577
  • Yang J, Park Y, Zhang H, et al. Feed-forward signaling of TNF-α and NF-κB via IKK-β pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2009;296(6):H1850–H1858. doi: 10.1152/ajpheart.01199.2008
  • Mann DL, Kirschenbaum L. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res. 2011;108(9):1133–1145. doi: 10.1161/CIRCRESAHA.110.226936
  • Sciarretta S, Paneni F, Palano F, et al. Role of the renin–angiotensin–aldosterone system and inflammatory processes in the development and progression of diastolic dysfunction. Clinical Science (London, England). 2009;116(6):467–477. doi: 10.1042/CS20080390
  • Yan SF, Ramasamy R, Naka Y, et al. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93(12):1159–1169. doi: 10.1161/01.RES.0000103862.26506.3D
  • Westermann D, Walther T, Savvatis K, et al. Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes. 2009;58(6):1373–1381. doi: 10.2337/db08-0329
  • Fernandes ES, Liang L, Smillie S-J, et al. TRPV1 deletion enhances local inflammation and accelerates the onset of systemic inflammatory response syndrome. Journal Of Immunology (Baltimore, Md). 2012;188(11):5741–5751. doi: 10.4049/jimmunol.1102147
  • Ching L-C, Kou YR, Shyue S-K, et al. Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1. Cardiovasc Res. 2011;91(3):492–501. doi: 10.1093/cvr/cvr104
  • Singh S, Natarajan K, Aggarwal BB. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-kappa B activation by diverse agents. J Immun (Baltimore. 1996;157(10):4412–4420. Md. : 1950). doi: 10.4049/jimmunol.157.10.4412
  • Sancho R, Macho A, de La Vega L, et al. Immunosuppressive activity of endovanilloids: N -arachidonoyl-dopamine inhibits activation of the NF-κB, NFAT, and activator protein 1 signaling pathways. Journal Of Immunology (Baltimore, Md). 2004;172(4):2341–2351. doi: 10.4049/jimmunol.172.4.2341
  • Huang W, Rubinstein J, Prieto AR, et al. Transient receptor potential vanilloid gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction. Hypertension. 2009;53(2):243–250. Hypertension (Dallas, Tex. : 1979). doi: 10.1161/HYPERTENSIONAHA.108.118349
  • Jia G, Habibi J, DeMarco VG, et al. Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension. 2015;66(6):1159–1167. Hypertension (Dallas, Tex.: 1979). doi: 10.1161/HYPERTENSIONAHA.115.06015
  • Ururahy MAG, Loureiro MB, Freire-Neto FP, et al. Increased TLR2 expression in patients with type 1 diabetes: evidenced risk of microalbuminuria. Pediatr Diabetes. 2012;13(2):147–154. doi: 10.1111/j.1399-5448.2011.00794.x
  • Lv Z, Xu X, Sun Z, et al. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca/CaMKII/Nrf2 signaling pathway. Cell Death Dis. 2021;12(6):504. doi: 10.1038/s41419-021-03792-8
  • Zhao J-F, Ching L-C, Kou YR, et al. Activation of TRPV1 prevents OxLDL-induced lipid accumulation and TNF-α-induced inflammation in macrophages: role of liver X receptor α. Mediators Inflamm. 2013;2013:1–14. doi: 10.1155/2013/925171
  • Anderson EJ, Kypson AP, Rodriguez E, et al. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol. 2009;54(20):1891–1898. doi: 10.1016/j.jacc.2009.07.031
  • Anderson EJ, Rodriguez E, Anderson CA, et al. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol. 2011;300(1):H118–H124. doi: 10.1152/ajpheart.00932.2010
  • Kim J-A, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–414. doi: 10.1161/CIRCRESAHA.107.165472
  • Luo Z, Ma L, Zhao Z, et al. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Res. 2012;22(3):551–564. doi: 10.1038/cr.2011.205
  • Wang Y-X, Zhang C-L, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2004;2(10):e294. doi: 10.1371/journal.pbio.0020294
  • Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. Journal Of Physiology. 2008;586(1):35–44. doi: 10.1113/jphysiol.2007.143834
  • Wu S, Lu Q, Ding Y, et al. Hyperglycemia-Driven inhibition of AMP-Activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 2019;139(16):1913–1936. doi: 10.1161/CIRCULATIONAHA.118.033552
  • Wu S, Lu Q, Wang Q, et al. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum Membranes Maintains mitochondrial Dynamics and function in hearts in vivo. Circulation. 2017;136(23):2248–2266. doi: 10.1161/CIRCULATIONAHA.117.030235
  • Wei X, Wei X, Lu Z, et al. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism. 2020;105:154182. doi: 10.1016/j.metabol.2020.154182
  • Shimizu M, Umeda K, Sugihara N, et al. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol. 1993;46(1):32–36. doi: 10.1136/jcp.46.1.32
  • Abed HS, Samuel CS, Lau DH, et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 2013;10(1):90–100. doi: 10.1016/j.hrthm.2012.08.043
  • Gao Y, Kang L, Li C, et al. Resveratrol ameliorates diabetes-induced cardiac dysfunction through AT1R-ERK/p38 MAPK signaling pathway. Cardiovasc Toxicol. 2016;16(2):130–137. doi: 10.1007/s12012-015-9321-3
  • Suematsu Y, Miura S-I, Goto M, et al. LCZ696 , an angiotensin receptor–neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice. European J Heart Fail. 2016;18(4):386–393. doi: 10.1002/ejhf.474
  • Frangogiannis NG. The role of transforming growth factor (TGF)-β in the infarcted myocardium. J Thoracic Dis. 2017;9(Suppl 1):S52–S63. doi: 10.21037/jtd.2016.11.19
  • Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118(6):1021–1040. doi: 10.1161/CIRCRESAHA.115.306565
  • Wang Q, Zhang Y, Li D, et al. Transgenic overexpression of transient receptor potential vanilloid subtype 1 attenuates isoproterenol-induced myocardial fibrosis in mice. Int J Mol Med. 2016;38(2):601–609. doi: 10.3892/ijmm.2016.2648
  • An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2006;291(4):H1489–H1506. doi: 10.1152/ajpheart.00278.2006
  • Rijzewijk LJ, van der Meer RW, Lamb HJ, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol. 2009;54(16):1524–1532. doi: 10.1016/j.jacc.2009.04.074
  • Ghosh S, An D, Pulinilkunnil T, et al. Role of dietary fatty acids and acute hyperglycemia in modulating cardiac cell death. Calif.) (Burbank, Los Angeles County. Nutrition. 2004;20(10):916–923. doi: 10.1016/j.nut.2004.06.013
  • Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146(12):5341–5349. doi: 10.1210/en.2005-0938
  • Aasum E, Hafstad AD, Severson DL, et al. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52(2):434–441. doi: 10.2337/diabetes.52.2.434
  • Panchal SK, Bliss E, Brown L. Capsaicin in Metabolic Syndrome. Nutrients. 2018;10(5):630. doi: 10.3390/nu10050630
  • Akiba Y, Kato S, Katsube K-I, et al. Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet β cells modulates insulin secretion in rats. Biochem Biophys Res Commun. 2004;321(1):219–225. doi: 10.1016/j.bbrc.2004.06.149
  • Tsui H, Razavi R, Chan Y, et al. ‘Sensing’ autoimmunity in type 1 diabetes. Trends Mol Med. 2007;13(10):405–413. doi: 10.1016/j.molmed.2007.07.006
  • Razavi R, Chan Y, Afifiyan FN, et al. TRPV1+ Sensory Neurons Control β Cell Stress and Islet Inflammation in Autoimmune Diabetes. Cell. 2006;127(6):1123–1135. doi: 10.1016/j.cell.2006.10.038
  • Zhong B, Ma S, Wang DH. TRPV1 Mediates Glucose-induced Insulin Secretion Through Releasing Neuropeptides. Vivo (Athens, Greece). 2019;33(5):1431–1437. doi: 10.21873/invivo.11621
  • Wang P, Yan Z, Zhong J, et al. Transient receptor potential vanilloid 1 activation enhances gut glucagon-like peptide-1 secretion and improves glucose homeostasis. Diabetes. 2012;61(8):2155–2165. doi: 10.2337/db11-1503
  • Parlevliet ET, de Leeuw van Weenen JE, Romijn JA, et al. GLP-1 treatment reduces endogenous insulin resistance via activation of central GLP-1 receptors in mice fed a high-fat diet. Am J Physiol Endocrinol Metab. 2010;299(2):E318–E324. doi: 10.1152/ajpendo.00191.2010
  • Borghetti G, von Lewinski D, Eaton DM, et al. Diabetic cardiomyopathy: Current and future therapies. Beyond glycemic control. Front Physiol. 2018;9:1514. doi: 10.3389/fphys.2018.01514
  • Stratton IM, Wei X, Lu Z, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–412. doi: 10.1136/bmj.321.7258.405
  • ElSayed NA, Aleppo G, Aroda VR, et al. 9. Pharmacologic approaches to glycemic treatment: standards of Care in diabetes—2023. Diabetes Care. 2023;46(Suppl 1):S140–S157. doi: 10.2337/dc23-S009
  • Chen YH, Feng B, Chen ZW. Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Experimental And Clinical Endocrinology & Diabetes: Official Journal, German Society Of Endocrinology [And] German Diabetes Association. 2012;120(2):116–120. doi: 10.1055/s-0031-1297968
  • Varzideh F, Kansakar U, Santulli G. SGLT2 inhibitors in cardiovascular medicine. Eur Heart J Cardiovasc Pharmacother. 2021;7(4):e67–e68. doi: 10.1093/ehjcvp/pvab039
  • Ng K-M, Lau Y-M, Dhandhania V, et al. Empagliflozin Ammeliorates High Glucose Induced-Cardiac Dysfuntion in Human iPSC-Derived Cardiomyocytes. Sci Rep. 2018;8(1):14872. doi: 10.1038/s41598-018-33293-2
  • Wang D, Jiang L, Feng B, et al. Protective effects of glucagon-like peptide-1 on cardiac remodeling by inhibiting oxidative stress through mammalian target of rapamycin complex 1/p70 ribosomal protein S6 kinase pathway in diabetes mellitus. J of Diabetes Invest. 2020;11(1):39–51. doi: 10.1111/jdi.13098
  • Liu J, Liu Y, Chen L, et al. Glucagon-like peptide-1 Analog Liraglutide protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway. J Diabetes Res. 2013;2013:1–8. doi: 10.1155/2013/630537
  • Arow M, Waldman M, Yadin D, et al. Sodium–glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol. 2020;19(1):7. doi: 10.1186/s12933-019-0980-4
  • Steven S, Oelze M, Hanf A, et al. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017;13:370–385. doi: 10.1016/j.redox.2017.06.009
  • Croteau D, Baka T, Young S, et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie. 2023;160:114310. doi: 10.1016/j.biopha.2023.114310
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–2128. doi: 10.1056/NEJMoa1504720
  • Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644–657. doi: 10.1056/NEJMoa1611925
  • Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347–357. doi: 10.1056/NEJMoa1812389
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–322. doi: 10.1056/NEJMoa1603827
  • Lambadiari V, Pavlidis G, Kousathana F, et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc Diabetol. 2018;17(1):8. doi: 10.1186/s12933-017-0646-z
  • Otto M, Bucher C, Liu W, et al. 12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1. J Clin Investig. 2020;130(9):4999–5010. doi: 10.1172/JCI136621
  • Otto M, Brabenec L, Müller M, et al. Development of heart failure with preserved ejection fraction in type 2 diabetic mice is ameliorated by preserving vascular function. Life Sci. 2021;284:119925. doi: 10.1016/j.lfs.2021.119925
  • Hennessy E, Rakovac Tisdall A, Murphy N, et al. Elevated 12-hydroxyeicosatetraenoic acid (12-HETE) levels in serum of individuals with newly diagnosed type 1 diabetes. Diabet Med. 2017;34(2):292–294. doi: 10.1111/dme.13177
  • Zhang HJ, Sun CH, Kuang HY, et al. 12S-hydroxyeicosatetraenoic acid levels link to coronary artery disease in type 2 diabetic patients. J Endocrinol Invest. 2013;36(6):385–389. doi: 10.3275/8654
  • Antonipillai I, Nadler, JE, Vu, EJ, et al. A 12-lipoxygenase product, 12-hydroxyeicosatetraenoic acid, is increased in diabetics with incipient and early renal disease. J Clin Endocrinol Metab. 1996;81(5):1940–1945. doi: 10.1210/jc.81.5.1940
  • Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012;166(2):510–521. doi: 10.1111/j.1476-5381.2012.01851.x