552
Views
0
CrossRef citations to date
0
Altmetric
Review

Non-ionotropic voltage-gated calcium channel signaling

& ORCID Icon
Article: 2341077 | Received 09 Feb 2024, Accepted 04 Apr 2024, Published online: 11 Apr 2024

References

  • Gandini MA, Zamponi GW. Voltage-gated calcium channel nanodomains: molecular composition and function. FEBS J. 2022;289(3):614–27. doi: 10.1111/FEBS.15759
  • Atlas D, Wiser O, Trus M. The voltage-gated Ca2+ channel is the Ca2+ sensor of fast neurotransmitter release. Cell Mol Neurobiol. 2001;21(6):717–731. doi: 10.1023/A:1015104105262
  • Ji J, Yang SN, Huang X, et al. Modulation of L-type Ca(2+) channels by distinct domains within SNAP-25. Diabetes. 2002;51(5):1425–1436. doi: 10.2337/DIABETES.51.5.1425
  • Sheng ZH, Rettig J, Takahashi M. Identification of a syntaxin-binding site on N-type calcium channels. Neuron. 1994;13(6):1303–1313. doi: 10.1016/0896-6273(94)90417-0
  • Wiser O, Bennett MK, Atlas D. Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. Embo J. 1996;15(16):4100–4110. doi: 10.1002/j.1460-2075.1996.tb00785.x
  • Wiser O, Tobi D, Trus M, et al. Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel. FEBS Lett. 1997;404(2–3):203–207. doi: 10.1016/S0014-5793(97)00130-0
  • Wiser O, Trus M, Hernández A, et al. The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci U S A. 1999;96(1):248–253. doi: 10.1073/pnas.96.1.248
  • Yang SN, Larsson O, Bränström R, et al. Syntaxin 1 interacts with the L D subtype of voltage-gated Ca 2+ channels in pancreatic β cells. Proc Natl Acad Sci U S A. 1999;96(18):10164–10169. doi: 10.1073/PNAS.96.18.10164
  • Sabatini BL, Regehr WG. Timing of neurotransmission at fast synapses in the mammalian brain. Nature. 1996;384(6605):170–172. doi: 10.1038/384170a0
  • Atlas D. Voltage-gated calcium channels function as Ca2±activated signaling receptors | Elsevier Enhanced Reader. Trends Biochem Sci. 2014;39(2):45–52. doi: 10.1016/j.tibs.2013.12.005
  • Atlas D. Revisiting the molecular basis of synaptic transmission. Prog Neurobiol. 2022;216:102312. doi: 10.1016/J.PNEUROBIO.2022.102312
  • Atlas D. The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem. 2013;82(1):607–635. doi: 10.1146/annurev-biochem-080411-121438
  • Hagalili Y, Bachnoff N, Atlas D. The voltage-gated Ca 2+ channel is the Ca 2+ sensor protein of secretion. Biochemistry. 2008;47(52):13822–13830. doi: 10.1021/bi801619f
  • Marom M, Birnbaumer L, Atlas D. Membrane depolarization combined with Gq-activated G-protein-coupled receptors induce transient receptor potential channel 1 (TRPC1)- dependent potentiation of catecholamine release. Neuroscience. 2011;189. doi: 10.1016/j.neuroscience.2011.05.007
  • Marom M, Sebag A, Atlas D. Cations residing at the selectivity filter of the voltage-gated Ca 2+ -channel modify fusion-pore kinetics. Channels. 2007;1(5):377–386. doi: 10.4161/chan.5398
  • Lerner I, Trus M, Cohen R, et al. Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis. J Neurochem. 2006;97(1):116–127. doi: 10.1111/j.1471-4159.2006.03709.x
  • Trus M, Corkey RF, Nesher R, et al. The L-type voltage-gated Ca 2+ channel is the Ca 2+ sensor protein of stimulus−secretion coupling in pancreatic beta cells. Biochemistry. 2007;46(50):14461–14467. doi: 10.1021/bi7016816
  • Armstrong CM, Bezanilla FM, Horowicz P. Twitches in the presence of ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid. Biochim Biophys Acta. 1972;267(3):605–608. doi: 10.1016/0005-2728(72)90194-6
  • Rios E, Brum G. Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle. Nature. 1987;325(6106):717–720. doi: 10.1038/325717A0
  • Tanabe T, Beam KG, Adams BA, et al. Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling. Nature. 1990;346(6284):567–569. doi: 10.1038/346567A0
  • Gez LS, Hagalili Y, Shainberg A, et al. Voltage-driven Ca 2+ binding at the L-Type Ca 2+ channel triggers cardiac excitation–contraction coupling prior to Ca 2+ influx. Biochemistry. 2012;51(48):9658–9666. doi: 10.1021/bi301124a
  • Servili E, Trus M, Atlas D. Ion occupancy of the channel pore is critical for triggering excitation-transcription (ET) coupling. Cell Calcium. 2019;84:102102. doi: 10.1016/J.CECA.2019.102102
  • Servili E, Trus M, Maayan D, et al. β-Subunit of the voltage-gated Ca2+ channel Cav1.2 drives signaling to the nucleus via H-Ras. Proc Natl Acad Sci U S A. 2018;115(37):E8624–E8633. doi: 10.1073/pnas.1805380115
  • Servili E, Trus M, Sajman J, et al. Elevated basal transcription can underlie timothy channel association with autism related disorders. Prog Neurobiol. 2020;191:101820. doi: 10.1016/J.PNEUROBIO.2020.101820
  • Krey JF, Paşca SP, Shcheglovitov A, et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013;16(2):201–209. doi: 10.1038/NN.3307
  • Catterall WA, Lenaeus MJ, Gamal El-Din TM. Structure and pharmacology of voltage-gated sodium and calcium channels. Annu Rev Pharmacol Toxicol. 2020;60(1):133–154. doi: 10.1146/ANNUREV-PHARMTOX-010818-021757
  • Dolphin AC. Functions of presynaptic voltage-gated calcium channels. Function. 2021;2(1):zqaa027. doi: 10.1093/function/zqaa027
  • Westhoff M, Dixon RE. Mechanisms and regulation of cardiac Cav1.2 trafficking. Int J Mol Sci. 2021;22(11):5927. doi: 10.3390/ijms22115927
  • Tang L, Gamal El-Din TM, Payandeh J, et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature. 2014;505(7481):56–61. doi: 10.1038/NATURE12775
  • Chen Z, Mondal A, Abderemane-Ali F, et al. EMC chaperone–CaV structure reveals an ion channel assembly intermediate. Nature. 2023;619(7969):410–419. doi: 10.1038/S41586-023-06175-5
  • Sather WA, McCleskey EW. Permeation and selectivity in calcium channels. Annu Rev Physiol. 2003;65(1):133–159. doi: 10.1146/ANNUREV.PHYSIOL.65.092101.142345
  • Bading H. Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci. 2013;14(9):593–608. doi: 10.1038/NRN3531
  • Bengtson CP, Bading H. Nuclear calcium signaling. Adv Exp Med Biol. 2012;970:377–405. doi: 10.1007/978-3-7091-0932-8_17
  • Flavell SW, Greenberg ME. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci. 2008;31(1):563–590. doi: 10.1146/ANNUREV.NEURO.31.060407.125631
  • Chrivia JC, Kwok RPS, Lamb N, et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365(6449):855–859. doi: 10.1038/365855A0
  • Dolmetsch RE, Pajvani U, Fife K, et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science. 2001;294(5541):333–339. doi: 10.1126/SCIENCE.1063395
  • Kornhauser JM, Cowan CW, Shaywitz AJ, et al. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron. 2002;34(2):221–233. doi: 10.1016/S0896-6273(02)00655-4
  • Stevenson AS, Cartin L, Wellman TL, et al. Membrane depolarization mediates phosphorylation and nuclear translocation of CREB in vascular smooth muscle cells. Exp Cell Res. 2001;263(1):118–130. doi: 10.1006/EXCR.2000.5107
  • Wamhoff BR, Bowles DK, Owens GK. Excitation–transcription coupling in arterial smooth muscle. Circ Res. 2006;98(7):868–878. doi: 10.1161/01.RES.0000216596.73005.3C
  • West AE, Chen WG, Dalva MB, et al. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A. 2001;98(20):11024–11031. doi: 10.1073/PNAS.191352298
  • Wheeler DG, Barrett CF, Groth RD, et al. CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation–transcription coupling. J Cell Bio. 2008;183(5):849–863. doi: 10.1083/JCB.200805048
  • Cohen SM, Li B, Tsien RW, et al. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem Biophys Res Commun. 2015;460(1):88–99. doi: 10.1016/J.BBRC.2015.02.146
  • Ma H, Groth RD, Cohen SM, et al. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell. 2014;159(2):281–294. doi: 10.1016/J.CELL.2014.09.019
  • Cohen SM, Suutari B, He X, et al. Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nat Commun. 2018;9(1). doi: 10.1038/S41467-018-04705-8
  • Suzuki Y, Ozawa T, Kurata T, et al. A molecular complex of Ca v 1.2/CaMKK2/CaMK1a in caveolae is responsible for vascular remodeling via excitation–transcription coupling. Proc Natl Acad Sci USA. 2022;119(16). doi: 10.1073/PNAS.2117435119
  • Hagenston AM, Bading H, Bas-Orth C. Functional consequences of calcium-dependent synapse-to-nucleus communication: focus on transcription-dependent metabolic plasticity. Cold Spring Harb Perspect Biol. 2020;12(4). doi: 10.1101/CSHPERSPECT.A035287
  • Carter BC, Jahr CE. Postsynaptic, not presynaptic NMDA receptors are required for spike-timing-dependent LTD induction. Nat Neurosci. 2016;19(9):1218–1224. doi: 10.1038/NN.4343
  • Dore K, Malinow R. Elevated PSD-95 Blocks Ion-flux Independent LTD: A Potential New Role for PSD-95 in Synaptic Plasticity. Neuroscience. 2021;456:43–49. doi: 10.1016/J.NEUROSCIENCE.2020.02.020
  • Nabavi S, Kessels HW, Alfonso S, et al. Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc Natl Acad Sci U S A. 2013;110(10):4027–4032. doi: 10.1073/pnas.1219454110
  • Negri S, Faris P, Maniezzi C, et al. NMDA receptors elicit flux-independent intracellular Ca2+ signals via metabotropic glutamate receptors and flux-dependent nitric oxide release in human brain microvascular endothelial cells. Cell Calcium. 2021;99:102454. doi: 10.1016/J.CECA.2021.102454
  • Park DK, Petshow S, Anisimova M, et al. Reduced d-serine levels drive enhanced non-ionotropic NMDA receptor signaling and destabilization of dendritic spines in a mouse model for studying schizophrenia. Neurobiol Dis. 2022a;170:170. doi: 10.1016/J.NBD.2022.105772
  • Park DK, Stein IS, Zito K. Ion flux-independent NMDA receptor signaling. Neuropharmacology. 2022b;210:109019. doi: 10.1016/J.NEUROPHARM.2022.109019
  • Rajani V, Sengar AS, Salter MW. Tripartite signalling by NMDA receptors. Mol Brain. 2020;13(1). doi: 10.1186/S13041-020-0563-Z
  • Stein IS, Gray JA, Zito K. Non-Ionotropic NMDA receptor signaling drives activity-induced dendritic spine shrinkage. J Neurosci. 2015;35(35):12303–12308. doi: 10.1523/JNEUROSCI.4289-14.2015
  • Stein IS, Park DK, Flores JC, et al. Molecular Mechanisms of Non-ionotropic NMDA Receptor Signaling in Dendritic Spine Shrinkage. J Neurosci. 2020a;40(19):3741–3750. doi: 10.1523/JNEUROSCI.0046-20.2020
  • Trus M, Servili E, Taieb-Cohen T, et al. Autism associated mutations in β2 subunit of voltage-gated calcium channels constitutively activate gene expression. Cell Calcium. 2022;108:102672. doi: 10.1016/J.CECA.2022.102672
  • Kim S, Yun HM, Baik JH, et al. Functional interaction of neuronal Cav1.3 L-type calcium channel with ryanodine receptor type 2 in the rat hippocampus. J Biol Chem. 2007;282(45):32877–32889. doi: 10.1074/JBC.M701418200
  • Hohaus A, Beyl S, Kudrnac M, et al. Structural determinants of L-type channel activation in segment IIS6 revealed by a retinal disorder. J Biol Chem. 2005;280(46):38471–38477. doi: 10.1074/JBC.M507013200
  • Splawski I, Timothy KW, Sharpe LM, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31. doi: 10.1016/J.CELL.2004.09.011
  • Tran-Van-Minh A, De Waard M, Weiss N. Ca v β surface charged residues contribute to the regulation of neuronal calcium channels. Mol Brain. 2022;15(1). doi: 10.1186/S13041-021-00887-3
  • Splawski I, Timothy KW, Decher N, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A. 2005;102(23):8089–8096. doi: 10.1073/PNAS.0502506102
  • Lipkind GM, Fozzard HA. Modeling of the outer vestibule and selectivity filter of the L-type Ca2+ channel. Biochemistry. 2001;40(23):6786–6794. doi: 10.1021/BI010269A
  • Marom M, Hagalili Y, Sebag A, et al. Conformational changes induced in voltage-gated calcium channel Cav1.2 by BayK 8644 or FPL64176 modify the kinetics of secretion independently of Ca2+ influx. J Biol Chem. 2010;285(10):6996–7005. doi: 10.1074/jbc.M109.059865
  • Oliveria SF, Dittmer PJ, Youn DH, et al. Localized calcineurin confers Ca2±dependent inactivation on neuronal L-type Ca2+ channels. J Neurosci. 2012;32:15328–15337. doi: 10.1523/JNEUROSCI.2302-12.2012
  • Fowler T, Sen R, Roy AL. Regulation of primary response genes. Mol Cell. 2011;44(3):348–360. doi: 10.1016/J.MOLCEL.2011.09.014
  • Rienecker KDA, Poston RG, Segales JS, et al. Mild membrane depolarization in neurons induces immediate early gene transcription and acutely subdues responses to a successive stimulus. J Biol Chem. 2022;298(9):298. doi: 10.1016/J.JBC.2022.102278
  • Tyssowski KM, DeStefino NR, Cho JH, et al. Different neuronal activity patterns induce different gene expression programs. Neuron. 2018;98(3):530–546.e11. doi: 10.1016/J.NEURON.2018.04.001
  • Südhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004;27(1):509–547. doi: 10.1146/ANNUREV.NEURO.26.041002.131412
  • Brunger AT, Choi UB, Lai Y, et al. Molecular mechanisms of fast neurotransmitter release. Annu Rev Biophys. 2018;47(1):469–497. doi: 10.1146/ANNUREV-BIOPHYS-070816-034117
  • Chapman ER. How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem. 2008;77(1):615–641. doi: 10.1146/ANNUREV.BIOCHEM.77.062005.101135
  • Chapman ER. Synaptotagmin: A Ca2+ sensor that triggers exocytosis? Nat Rev Mol Cell Biol. 2002;3(7):498–508. doi: 10.1038/nrm855
  • Park Y, Ryu JK. Models of synaptotagmin-1 to trigger Ca2+ -dependent vesicle fusion. FEBS Lett. 2018;592(21):3480–3492. doi: 10.1002/1873-3468.13193
  • Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci. 2018;27(8):1364–1391. doi: 10.1002/PRO.3445
  • Südhof T. Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron. 2013;80(3):675–690. doi: 10.1016/j.neuron.2013.10.022
  • Südhof TC. A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med. 2013;19(10):1227–1231. doi: 10.1038/NM.3338
  • Zhou Q, Zhou P, Wang AL, et al. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis. Nature. 2017;548(7668):420–425. doi: 10.1038/NATURE23484
  • Brunger AT, Leitz J. The core complex of the Ca2±Triggered presynaptic fusion machinery. J Mol Biol. 2023;435(1):167853. doi: 10.1016/J.JMB.2022.167853
  • Miki T, Midorikawa M, Sakaba T. Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse. Proc Natl Acad Sci U S A. 2020;117(25):14493–14502. doi: 10.1073/pnas.2000265117
  • Bachnoff N, Cohen-Kutner M, Trus M, et al. Intra-membrane signaling between the voltage-gated Ca2±channel and cysteine residues of syntaxin 1A coordinates synchronous release. Sci Rep. 2013;3(1):1620. doi: 10.1038/srep01620
  • Barg S, Ma X, Eliasson L, et al. Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic B cells. Biophys J. 2001;81(6):3308–3323. doi: 10.1016/S0006-3495(01)75964-4
  • Cohen R, Marom M, Atlas D, et al. Depolarization-evoked secretion requires two vicinal transmembrane cysteines of syntaxin 1A. PLOS ONE. 2007a;2(12):e1273. doi: 10.1371/JOURNAL.PONE.0001273
  • Tobi D, Wiser O, Trus M, et al. N-type voltage-sensitive calcium channel interacts with syntaxin, synaptotagmin and SNAP-25 in a multiprotein complex. Recept. 1998;6(2): 89–98.
  • Trus M, Wiser O, Goodnough MC, et al. The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca2+ channels. Neuroscience. 2001;104(2):599–607. doi: 10.1016/S0306-4522(01)00083-5
  • Cohen-Kutner M, Nachmanni D, Atlas D. CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release. Channels (Austin). 2010;4. doi: 10.4161/CHAN.4.4.12130
  • Cohen R, Atlas D. R-type voltage-gated Ca 2+ channel interacts with synaptic proteins and recruits synaptotagmin to the plasma membrane of Xenopus oocytes. Neuroscience. 2004;128(4):831–841. doi: 10.1016/j.neuroscience.2004.07.027
  • Mochida S, Yokoyama CT, Kim DK, et al. Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca2+ channels. Proc Natl Acad Sci U S A. 1998;95(24):14523–14528. doi: 10.1073/PNAS.95.24.14523
  • Sajman J, Trus M, Atlas D, et al. The L-type voltage-gated calcium channel co-localizes with Syntaxin 1A in nano-clusters at the plasma membrane. Sci Rep. 2017;7(1):7. doi: 10.1038/S41598-017-10588-4
  • Cohen R, Schmitt BM, Atlas D. Molecular identification and reconstitution of depolarization-induced exocytosis monitored by membrane capacitance. Biophys J. 2005;89(6):4364–4373. doi: 10.1529/biophysj.105.064642
  • Arien H, Wiser O, Arkin IT, et al. Syntaxin 1A modulates the voltage-gated L-type calcium channel (Cavl.2) in a cooperative manner. J Biol Chem. 2003;278(31):29231–29239. doi: 10.1074/jbc.M301401200
  • Cohen R, Marom M, Atlas D, et al. Depolarization-evoked secretion requires two vicinal transmembrane cysteines of syntaxin 1A. PLOS ONE. 2007b;2(12):e1273. doi: 10.1371/journal.pone.0001273
  • Schiavo G, Shone CC, Bennett MK, et al. Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem. 1995;270(18):10566–10570. doi: 10.1074/JBC.270.18.10566
  • Vardar G, Salazar-Lázaro A, Zobel S, et al. Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. Elife. 2022;11. doi: 10.7554/ELIFE.78182
  • Cohen R, Schmitt BM, Atlas D. Reconstitution of depolarization and Ca2±evoked secretion in Xenopus oocytes monitored by membrane capacitance. Methods Mol Biol. 2008;440:269–282. doi: 10.1007/978-1-59745-178-9_21
  • Bachnoff N, Trus M, Atlas D. Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides. Free Radic Biol Med. 2011;50(10):1355–1367. doi: 10.1016/j.freeradbiomed.2011.02.026
  • Dai XQ, Camunas-Soler J, Briant LJB, et al. Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metab. 2022;34(2):256–268.e5. doi: 10.1016/J.CMET.2021.12.021
  • Ramachandran S, Rodgriguez S, Potcoava M, et al. Single calcium channel nanodomains drive presynaptic calcium entry at lamprey reticulospinal presynaptic terminals. J Neurosci. 2022;JN-RM-2207–21. doi: 10.1523/jneurosci.2207-21.2022
  • Weiss N. Control of depolarization-evoked presynaptic neurotransmitter release by Ca v 2.1 calcium channel. Channels (Austin). 2010;4(6):431–433. doi: 10.4161/CHAN.4.6.13613
  • Aow J, Dore K, Malinow R. Conformational signaling required for synaptic plasticity by the NMDA receptor complex. Proc Natl Acad Sci U S A. 2015;112(47):14711–14716. doi: 10.1073/PNAS.1520029112
  • Dore K, Stein IS, Brock JA, et al. Unconventional NMDA receptor signaling. J Neurosci. 2017;37(45):10800–10807. doi: 10.1523/JNEUROSCI.1825-17.2017
  • BreckenridgeLJ, AlmersW. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature. 1987;328(6133):814–817. doi: 10.1038/328814A0
  • Wiser O, Cohen R, Atlas D. Ionic dependence of Ca2+ channel modulation by syntaxin 1A. Proc Natl Acad Sci U S A. 2002;99(6):3968–3973. doi: 10.1073/pnas.052017299
  • Lockless SW, Zhou M, MacKinnon R, et al. Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol. 2007;5(5):1079–1088. doi: 10.1371/JOURNAL.PBIO.0050121
  • Brettmann JB, Urusova D, Tonelli M, et al. Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel. Proc Natl Acad Sci U S A. 2015;112(50):15366–15371. doi: 10.1073/PNAS.1515965112
  • Wang Y, Huang R, Chai Z, et al. Ca2+ -independent transmission at the central synapse formed between dorsal root ganglion and dorsal horn neurons. EMBO Rep. 2022;23(11). doi: 10.15252/EMBR.202154507
  • Giraudo CG, Eng WS, Melia TJ, et al. A clamping mechanism involved in SNARE-dependent exocytosis. Science. 2006;313(5787):676–680. doi: 10.1126/SCIENCE.1129450
  • Melia TJ. Putting the clamps on membrane fusion: how complexin sets the stage for calcium-mediated exocytosis. FEBS Lett. 2007;581(11):2131–2139. doi: 10.1016/J.FEBSLET.2007.02.066
  • Schaub JR, Lu X, Doneske B, et al. Hemifusion arrest by complexin is relieved by Ca2+–synaptotagmin I. Nat Struct Mol Biol. 2006;13(8):748–750. doi: 10.1038/NSMB1124
  • Tang J, Maximov A, Shin OH, et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell. 2006;126(6):1175–1187. doi: 10.1016/J.CELL.2006.08.030
  • Fernández-Chacón R, Königstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature. 2001;410(6824):41–49. doi: 10.1038/35065004
  • Rizo J, Sari L, Qi Y, et al. All-atom molecular dynamics simulations of Synaptotagmin-SNARE-complexin complexes bridging a vesicle and a flat lipid bilayer. 2022. Elife 11. doi: 10.7554/ELIFE.76356
  • Voleti R, Jaczynska K, Rizo J. Ca2±dependent release of synaptotagmin-1 from the SNARE complex on phosphatidylinositol 4,5-bisphosphate-containing membranes. Elife. 2020;9:1–95. doi: 10.7554/ELIFE.57154
  • Chen Y, Wang YH, Zheng Y, et al. Synaptotagmin-1 interacts with PI(4,5)P2 to initiate synaptic vesicle docking in hippocampal neurons. Cell Rep. 2021;34(11):34. doi: 10.1016/J.CELREP.2021.108842
  • Jaczynska K, Esquivies L, Pfuetzner RA, et al. Analysis of tripartite Synaptotagmin-1-SNARE-complexin-1 complexes in solution. FEBS Open Bio. 2023;13(1):26–50. doi: 10.1002/2211-5463.13503
  • Marín-Vicente C, Nicolás FE, Gómez-Fernández JC, et al. The PtdIns(4,5)P2 ligand itself influences the localization of PKCα in the plasma membrane of intact living cells. J Mol Biol. 2008;377(4):1038–1052. doi: 10.1016/J.JMB.2007.12.011
  • Michaeli L, Gottfried I, Bykhovskaia M, et al. Phosphatidylinositol (4, 5)-bisphosphate targets double C2 domain protein B to the plasma membrane. Traffic. 2017;18(12):825–839. doi: 10.1111/TRA.12528
  • Sato M, Mori Y, Matsui T, et al. Role of the polybasic sequence in the Doc2α C2B domain in dense-core vesicle exocytosis in PC12 cells. J Neurochem. 2010;114(1):171–181. doi: 10.1111/J.1471-4159.2010.06739.X
  • FATT F, KATZ K. Membrane potentials at the motor end-plate. J Physiol. 1950;111(1–2):46p–47p.
  • Schneggenburger R, Rosenmund C. Molecular mechanisms governing Ca(2+) regulation of evoked and spontaneous release. Nat Neurosci. 2015;18(7):935–941. doi: 10.1038/NN.4044
  • Xu J, Pang ZP, Shin OH, et al. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci. 2009;12(6):759–766. doi: 10.1038/nn.2320
  • Flucher BE, Campiglio M. STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. Biochim Biophys Acta, Mol Cell Res. 2019;1866(7):1101–1110. doi: 10.1016/J.BBAMCR.2018.12.004
  • Franzini-Armstrong C. The relationship between form and function throughout the history of excitation–contraction coupling. J Gen Physiol. 2018;150(2):189–210. doi: 10.1085/JGP.201711889
  • Ríos E, Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991;71(3):849–908. doi: 10.1152/PHYSREV.1991.71.3.849
  • Rufenach B, Van Petegem F. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation–contraction coupling. J Biol Chem. 2021;297(1):297. doi: 10.1016/J.JBC.2021.100874
  • Kawai M, Hussain M, Orchard CH. Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. Am J Physiol. 1999;277(2):H603–H609. doi: 10.1152/AJPHEART.1999.277.2.H603
  • Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983;245(1):C1–C14. doi: 10.1152/AJPCELL.1983.245.1.C1
  • Sham JSK, Cleemann L, Morad M. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci U S A. 1995;92(1):121–125. doi: 10.1073/PNAS.92.1.121
  • Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985;85(2):247–289. doi: 10.1085/JGP.85.2.247
  • Bers DM. Cardiac excitation–contraction coupling. Nature. 2002;415(6868):198–205. doi: 10.1038/415198A
  • Dixon RE, Trimmer JS. Endoplasmic reticulum-plasma membrane junctions as sites of depolarization-induced Ca2+ signaling in excitable cells. Annu Rev Physiol. 2023;85:217–243. doi: 10.1146/ANNUREV-PHYSIOL-032122-104610
  • Dixon RE, Navedo MF, Binder MD, et al. Mechanisms and physiological implications of cooperative gating of clustered ion channels. Physiol Rev. 2022;102(3):1159–1210. doi: 10.1152/PHYSREV.00022.2021
  • Guarina L, Moghbel AN, Pourhosseinzadeh MS, et al. Biological noise is a key determinant of the reproducibility and adaptability of cardiac pacemaking and EC coupling. J Gen Physiol. 2022;154(9). doi: 10.1085/JGP.202012613
  • Del Villar SG, Voelker TL, Westhoff M, et al. β-Adrenergic control of sarcolemmal CaV1.2 abundance by small GTPase Rab proteins. Proc Natl Acad Sci, USA. 2021;118(7):S. A. 118. doi: 10.1073/pnas.2017937118
  • Ito DW, Hannigan KI, Ghosh D, et al. β-adrenergic-mediated dynamic augmentation of sarcolemmal CaV 1.2 clustering and co-operativity in ventricular myocytes. J Physiol. 2019;597(8):2139–2162. doi: 10.1113/JP277283
  • Josephson IR, Guia A, Sobie EA, et al. Physiologic gating properties of unitary cardiac L-type Ca2+ channels. Biochem Biophys Res Commun. 2010;396(3):763–766. doi: 10.1016/J.BBRC.2010.05.016
  • Wang SQ, Song LS, Lakatta EG, et al. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature. 2001;410(6828):592–596. doi: 10.1038/35069083
  • Guo W, Sun B, Xiao Z, et al. The EF-hand Ca2+ binding domain is not required for cytosolic Ca2+ activation of the cardiac ryanodine receptor. J Biol Chem. 2016;291(5):2150–2160. doi: 10.1074/JBC.M115.693325
  • Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol. 2017;149(12):1065–1089. doi: 10.1085/JGP.201711878
  • Adachi-Akahane S, Cleemann L, Morad M. BAY K 8644 modifies Ca2+ cross signaling between DHP and ryanodine receptors in rat ventricular myocytes. American Journal Of Physiology-Heart And Circulatory Physiology. 1999;276(4):H1178–H1189. doi: 10.1152/AJPHEART.1999.276.4.H1178
  • Altamirano J, Bers DM. Voltage dependence of cardiac excitation–contraction coupling. Circ Res. 2007;101(6):590–597. doi: 10.1161/CIRCRESAHA.107.152322
  • Zhang XH, Morad M. Ca2+ signaling of human pluripotent stem cells-derived cardiomyocytes as compared to adult mammalian cardiomyocytes. Cell Calcium. 2020;90:102244. doi: 10.1016/J.CECA.2020.102244
  • Ríos E, Stern MD. Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena. Annu Rev Biophys Biomol Struct. 1997;26(1):47–82. doi: 10.1146/ANNUREV.BIOPHYS.26.1.47
  • Stern MD. Buffering of calcium in the vicinity of a channel pore. Cell Calcium. 1992;13(3):183–192. doi: 10.1016/0143-4160(92)90046-U
  • Judd RM, Levy BI. Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res. 1991;68(1):217–225. doi: 10.1161/01.RES.68.1.217
  • Saeki Y, Shibata T, Shiozawa K. Excitation-contraction coupling in mammalian cardiac muscle during Ba2±induced contracture. Am J Physiol. 1981;240(2):H216–H221. doi: 10.1152/AJPHEART.1981.240.2.H216
  • Tibbits GF, Philipson KD. Na±dependent alkaline earth metal uptake in cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1985;817(2):327–332. doi: 10.1016/0005-2736(85)90035-5
  • Näbauer M, Callewaert G, Cleemann L, et al. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 1989;244(4906):800–803. doi: 10.1126/SCIENCE.2543067
  • Kirchhefer U, Neumann J, Bers DM, et al. Impaired relaxation in transgenic mice overexpressing junctin. Cardiovasc Res. 2003;59(2):369–379. doi: 10.1016/S0008-6363(03)00432-2
  • Trac M, Dyck C, Hnatowich M, et al. Transport and regulation of the cardiac Na(+)-Ca2+ exchanger, NCX1. Comparison between Ca2+ and Ba2+. J Gen Physiol. 1997;109(3):361–369. doi: 10.1085/JGP.109.3.361
  • Morad M, Trautwein W. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;299(1):66–82. doi: 10.1007/BF00362542
  • Mitchell MR, Powell T, Terrar DA, et al. Electrical activity and contraction in cells isolated from rat and guinea-pig ventricular muscle: a comparative study. J Physiol. 1987;391(1):527–544. doi: 10.1113/JPHYSIOL.1987.SP016754
  • Scriven DRL, Dan P, Moore EDW. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J. 2000;79(5):2682–2691. doi: 10.1016/S0006-3495(00)76506-4
  • Sun XH, Protasi F, Takahashi M, et al. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J Cell Bio. 1995;129(3):659–671. doi: 10.1083/JCB.129.3.659
  • Berrout J, Isokawa M. Homeostatic and stimulus-induced coupling of the L-type Ca2+ channel to the ryanodine receptor in the hippocampal neuron in slices. Cell Calcium. 2009;46(1):30–38. doi: 10.1016/J.CECA.2009.03.018
  • Cros C, Sallé L, Warren DE, et al. The calcium stored in the sarcoplasmic reticulum acts as a safety mechanism in rainbow trout heart. Am J Physiol Regul Integr Comp Physiol. 2014;307(12):R1493–R1501. doi: 10.1152/AJPREGU.00127.2014