468
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The activation thresholds and inactivation kinetics of poking-evoked PIEZO1 and PIEZO2 currents are sensitive to subtle variations in mechanical stimulation parameters

ORCID Icon & ORCID Icon
Article: 2355123 | Received 27 Mar 2024, Accepted 10 May 2024, Published online: 16 May 2024

References

  • Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–11. doi: 10.1126/science.1193270
  • Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol. 2017;18(12):771. doi: 10.1038/nrm.2017.92
  • Szczot M, Nickolls AR, Lam RM, et al. The form and function of PIEZO2. Annu Rev Biochem. 2021;90(1):507–534. doi: 10.1146/annurev-biochem-081720-023244
  • Wu J, Lewis AH, Touch GJ. Touch, tension, and transduction – the function and regulation of Piezo Ion channels. Trends Biochem Sci. 2017;42(1):57–71. doi: 10.1016/j.tibs.2016.09.004
  • Li J, Hou B, Tumova S, et al. Piezo1 integration of vascular architecture with physiological force. Nature. 2014;515(7526):279–282. doi: 10.1038/nature13701
  • Wang S, Chennupati R, Kaur H, et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126(12):4527–4536. doi: 10.1172/JCI87343
  • Servin-Vences MR, Moroni M, Lewin GR, et al. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. Elife. 2017;6:e21074. doi: 10.7554/eLife.21074
  • Cahalan SM, Lukacs V, Ranade SS, et al. Piezo1 links mechanical forces to red blood cell volume. Elife. 2015;4:e07370. doi: 10.7554/eLife.07370
  • Vaisey G, Banerjee P, North AJ, et al. Piezo1 as a force-through-membrane sensor in red blood cells. Elife. 2022;11:e82621. doi: 10.7554/eLife.82621
  • Ranade SS, Woo SH, Dubin AE, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature. 2014;516(7529):121–125. doi: 10.1038/nature13980
  • Woo SH, Lukacs V, de Nooij JC, et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci. 2015;18(12):1756–1762. doi: 10.1038/nn.4162
  • Chesler AT, Szczot M, Bharucha-Goebel D, et al. The role of PIEZO2 in human mechanosensation. N Engl J Med. 2016;375(14):1355–1364. doi: 10.1056/NEJMoa1602812
  • Schrenk-Siemens K, Wende H, Prato V, et al. PIEZO2 is required for mechanotransduction in human stem cell–derived touch receptors. Nat Neurosci. 2015;18(1):10–16. doi: 10.1038/nn.3894
  • Prato V, Taberner FJ, Hockley JRF, et al. Functional and molecular characterization of mechanoinsensitive “silent” nociceptors. Cell Rep. 2017;21(11):3102–3115. doi: 10.1016/j.celrep.2017.11.066
  • Nonomura K, Woo SH, Chang RB, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541(7636):176–181. doi: 10.1038/nature20793
  • Marshall KL, Saade D, Ghitani N, et al. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature. 2020;588(7837):290–295. doi: 10.1038/s41586-020-2830-7
  • Kefauver JM, Ward AB, Patapoutian A. Discoveries in structure and physiology of mechanically activated ion channels. Nature. 2020;587(7835):567–576. doi: 10.1038/s41586-020-2933-1
  • Poole K. The diverse physiological functions of mechanically activated ion channels in mammals. Annu Rev Physiol. 2022;84(1):307–329. doi: 10.1146/annurev-physiol-060721-100935
  • Nourse JL, Pathak MM. How cells channel their stress: interplay between Piezo1 and the cytoskeleton. Semin Cell Dev Biol. 2017;71:3–12. doi: 10.1016/j.semcdb.2017.06.018
  • Verkest C, Schaefer I, Nees TA, et al. Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2. Nat Commun. 2022;13(1):1365. doi: 10.1038/s41467-022-28974-6
  • McCarter G, Reichling D, Levine J. Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci lett. 1999;273(3):179–182. doi: 10.1016/S0304-3940(99)00665-5
  • Drew L, Wood J, Cesare P. Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J Neurosci Off J Soc Neurosci. 2002;22(12):RC228–RC228. doi: 10.1523/JNEUROSCI.22-12-j0001.2002
  • Hu J, Lewin GR. Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J Physiol. 2006;577(3):815–828. doi: 10.1113/jphysiol.2006.117648
  • Richardson J, Kotevski A, Poole K. From stretch to deflection: the importance of context in the activation of mammalian, mechanically activated ion channels. FEBS J. 2021;289(15):4447–4469. doi: 10.1111/febs.16041
  • Hao J, Delmas P. Recording of mechanosensitive currents using piezoelectrically driven mechanostimulator. Nat Protoc. 2011;6(7):979–990. doi: 10.1038/nprot.2011.343
  • Lewis AH, Grandl J. Stretch and poke stimulation for characterizing mechanically activated ion channels. Methods Enzymol. 2021;654:225–253.
  • Romero LO, Caires R, Nickolls AR, et al. A dietary fatty acid counteracts neuronal mechanical sensitization. Nat Commun. 2020;11(1):2997. doi: 10.1038/s41467-020-16816-2
  • Lewis AH, Grandl J. Inactivation kinetics and mechanical gating of Piezo1 ion channels depend on subdomains within the cap. Cell Rep. 2020;30(3):870–880.e2. doi: 10.1016/j.celrep.2019.12.040
  • Zheng W, Nikolaev YA, Gracheva EO, et al. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors. In: Proceedings of the National Academy of Sciences of the United States of America; 2019; v. 116; p. 17547–17555.
  • Wang J, Jiang J, Yang X, et al. Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-β-catenin mechanotransduction complex. Cell Rep [Internet]. 2022 [cited 2022 March 13];38(6):110342. doi: 10.1016/j.celrep.2022.110342
  • Gottlieb PA, Bae C, Sachs F. Gating the mechanical channel Piezo1: a comparison between whole-cell and patch recording. Channels (Austin). 2012;6(4):282–289. doi: 10.4161/chan.21064
  • Eijkelkamp N, Linley JE, Torres JM, et al. A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun. 2013;4(1):1682. doi: 10.1038/ncomms2673
  • Szczot M, Pogorzala LA, Solinski HJ, et al. Cell-type-specific splicing of Piezo2 regulates mechanotransduction. Cell Rep. 2017;21(10):2760–2771. doi: 10.1016/j.celrep.2017.11.035
  • Rosario JSD, Yudin Y, Su S, et al. Gi‐coupled receptor activation potentiates Piezo2 currents via Gβγ. EMBO Rep. 2020;21(5):e49124. doi: 10.15252/embr.201949124
  • Taberner FJ, Prato V, Schaefer I, et al. Structure-guided examination of the mechanogating mechanism of PIEZO2. Proc Natl Acad Sci, USA. 2019;116(28):14260–14269. doi: 10.1073/pnas.1905985116
  • Lechner SG, Frenzel H, Wang R, et al. Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. Embo J. 2009;28(10):1479–1491. doi: 10.1038/emboj.2009.73
  • Lechner SG, Lewin GR. Peripheral sensitisation of nociceptors via G-protein-dependent potentiation of mechanotransduction currents. J Physiol. 2009;587(14):3493–3503. doi: 10.1113/jphysiol.2009.175059
  • Tappe-Theodor A, Constantin CE, Tegeder I, et al. Gαq/11 signaling tonically modulates nociceptor function and contributes to activity-dependent sensitization. Pain. 2012;153(1):184–196. doi: 10.1016/j.pain.2011.10.014
  • Nees TA, Wang N, Adamek P, et al. Role of TMEM100 in mechanically insensitive nociceptor un-silencing. Nat Commun. 2023;14(1):1899. doi: 10.1038/s41467-023-37602-w
  • Schaefer I, Verkest C, Vespermann L, et al. PKA mediates modality-specific modulation of the mechanically gated ion channel PIEZO2. J Biol Chem. 2023;299(6):104782. doi: 10.1016/j.jbc.2023.104782
  • Moroni M, Servin-Vences MR, Fleischer R, et al. Voltage gating of mechanosensitive PIEZO channels. Nat Commun. 2018;9(1):1096. doi: 10.1038/s41467-018-03502-7
  • Rugiero F, Drew LJ, Wood JN. Kinetic properties of mechanically activated currents in spinal sensory neurons. J Physiol. 2010;588(2):301–314. doi: 10.1113/jphysiol.2009.182360
  • Verkest C, Lechner SG. Advances and recent insights into the gating mechanisms of the mechanically activated ion channels PIEZO1 and PIEZO2. Curr Opin Physiol. 2023;31:100625. doi: 10.1016/j.cophys.2022.100625
  • Heidenreich M, Lechner SG, Vardanyan V, et al. KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci. 2012;15(1):138–145. doi: 10.1038/nn.2985
  • Wende H, Lechner SG, Cheret C, et al. The transcription factor c-Maf controls touch receptor development and function. Sci. 2012;335(6074):1373–1376. doi: 10.1126/science.1214314
  • Zheng W, Gracheva EO, Bagriantsev SN. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. Elife. 2019;8. doi: 10.7554/eLife.44003
  • Wu J, Young M, Lewis AH, et al. Inactivation of mechanically activated Piezo1 ion channels is determined by the C-Terminal extracellular domain and the inner pore helix. Cell Rep. 2017;21(9):2357–2366. doi: 10.1016/j.celrep.2017.10.120
  • Zhou Z, Ma X, Lin Y, et al. MyoD-family inhibitor proteins act as auxiliary subunits of piezo channels. Sci. 2023;381(6659):799–804. doi: 10.1126/science.adh8190
  • Anderson EO, Schneider ER, Matson JD, et al. TMEM150C/Tentonin3 is a regulator of mechano-gated ion channels. Cell Rep. 2018;23(3):701–708. doi: 10.1016/j.celrep.2018.03.094
  • Zhou Z, Martinac B. Mechanisms of PIEZO channel inactivation. Int J Mol Sci. 2023;24(18):14113. doi: 10.3390/ijms241814113
  • Cox CD, Bavi N, Martinac B. Chapter three - origin of the force: the force-from-lipids principle applied to piezo channels. In: Gottlieb P, editor. Current topics in membranes [Internet]. Academic Press; 2017 [cited 2019 December 16]. p. 59–96. http://www.sciencedirect.com/science/article/pii/S1063582316300394
  • Martinac B, Kung C, Ryabova EV. Reduction of the α-synuclein expression promotes slowing down early neuropathology development in the drosophila model of Parkinson’s disease. J Neurogenet. 2022;36(1):1–10. doi: 10.1080/01677063.2022.2064462
  • Shi Z, Graber ZT, Baumgart T, et al. Cell membranes resist flow. Cell. 2018;175(7):1769–1779.e13. doi: 10.1016/j.cell.2018.09.054