402
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism

& ORCID Icon
Article: 2355150 | Received 01 Apr 2024, Accepted 10 May 2024, Published online: 19 May 2024

References

  • Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience. 1976 Aug;1(4):239–17. doi: 10.1016/0306-4522(76)90054-3
  • Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998 Sep;50(3):413–492.
  • Khakh BS, North RA. P2X receptors as cell-surface ATP sensors in health and disease. Nature. 2006 Aug 3;442(7102):527–532. doi: 10.1038/nature04886
  • North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci. 2016 Aug 5;371(1700).
  • Burnstock G. The therapeutic potential of purinergic signalling. Biochem Pharmacol. 2018 May;151:157–165. doi: 10.1016/j.bcp.2017.07.016
  • Burnstock G. Purinergic signaling in the cardiovascular system. Circ Res. 2017 Jan 6;120(1):207–228. doi: 10.1161/CIRCRESAHA.116.309726
  • Kaczmarek-Hájek K, Lörinczi É, Hausmann R, et al. Molecular and functional properties of P2X receptors—recent progress and persisting challenges. Purinergic Signal. 2012;8(3):375–417. doi: 10.1007/s11302-012-9314-7
  • Nicke A. Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem Biophys Res Commun. 2008 Dec 19;377(3):803–808. doi: 10.1016/j.bbrc.2008.10.042
  • Kawate T, Michel JC, Birdsong WT, et al. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature. 2009;460(7255):592–598. doi: 10.1038/nature08198
  • Kopp R, Krautloher A, Ramírez-Fernández A, et al. P2X7 interactions and signaling - making head or tail of it. Front Mol Neurosci. 2019;12:183. doi: 10.3389/fnmol.2019.00183
  • Mansoor SE, Lu W, Oosterheert W, et al. X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature. 2016 Oct 6;538(7623):66–71. doi: 10.1038/nature19367
  • McCarthy AE, Yoshioka C, Mansoor SE. Full-length P2X7 structures reveal how palmitoylation prevents channel desensitization. Cell. 2019;179(3):659–670. e13. doi: 10.1016/j.cell.2019.09.017
  • Karasawa A, Kawate T. Structural basis for subtype-specific inhibition of the P2X7 receptor. Elife. 2016 Dec 9;5. doi: 10.7554/eLife.22153
  • Dy S, Chenqian Y, Jin F, et al. Structural insights into the orthosteric inhibition of P2X receptors by non-ATP-analog antagonists. Elife. 2023.
  • Bin Dayel A, Evans RJ, Schmid R. Mapping the site of action of human p2x7 receptor antagonists AZ11645373, brilliant blue G, KN-62, calmidazolium, and ZINC58368839 to the intersubunit allosteric pocket. Mol Pharmacol. 2019 Sep;96(3):355–363. doi: 10.1124/mol.119.116715
  • Riedel T, Schmalzing G, Markwardt F. Influence of extracellular monovalent cations on pore and gating properties of P2X7 receptor-operated single-channel currents. Biophys J. 2007 Aug 1;93(3):846–858. doi: 10.1529/biophysj.106.103614
  • Harkat M, Peverini L, Cerdan AH, et al. On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proc Natl Acad Sci U S A. 2017 May 9;114(19):E3786–E3795. doi: 10.1073/pnas.1701379114
  • Dunning K, Martz A, Peralta FA, et al. P2X7 Receptors and TMEM16 channels are functionally coupled with implications for macropore formation and current facilitation. Int J Mol Sci. 2021 Jun 18;22(12):6542. doi: 10.3390/ijms22126542
  • Cevoli F, Arnould B, Peralta FA, et al. Untangling macropore formation and current facilitation in P2X7. Int J Mol Sci. 2023 Jun 30;24(13):10896. doi: 10.3390/ijms241310896
  • Karasawa A, Michalski K, Mikhelzon P, et al. The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. Elife. 2017 Sep 18;6:6. doi: 10.7554/eLife.31186
  • Kobayashi S, Kitazawa T, Somlyo AV, et al. Cytosolic heparin inhibits muscarinic and alpha-adrenergic Ca2+ release in smooth muscle. Physiological role of inositol 1,4,5-trisphosphate in pharmacomechanical coupling. J Biol Chem. 1989 Oct 25;264(30):17997–18004. doi: 10.1016/S0021-9258(19)84670-7
  • Innocenti B, Pfeiffer S, Zrenner E, et al. ATP-induced non-neuronal cell permeabilization in the rat inner retina. J Neurosci. 2004 Sep 29;24(39):8577–8583. doi: 10.1523/JNEUROSCI.2812-04.2004
  • Luo W, Feldman D, McCallister R, et al. P2X7R antagonism after subfailure overstretch injury of blood vessels reverses vasomotor dysfunction and prevents apoptosis. Purinergic Signal. 2017 Dec;13(4):579–590. doi: 10.1007/s11302-017-9585-0
  • Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. Embo J. 2006 Nov 1;25(21):5071–5082. doi: 10.1038/sj.emboj.7601378
  • Liang X, Samways DSK, Wolf K, et al. Quantifying Ca2+ current and permeability in ATP-gated P2X7 receptors*. J Biol Chem. 2015 03 20;290(12):7930–7942. doi: 10.1074/jbc.M114.627810
  • Amstrup J, Novak I. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx. Biochem J. 2003 Aug 15;374(Pt 1):51–61. doi: 10.1042/bj20030585
  • Richter K, Asci N, Singh VK, et al. Activation of endothelial NO synthase and P2X7 receptor modification mediates the cholinergic control of ATP-induced interleukin-1β release by mononuclear phagocytes. Front Immunol. 2023;14:1140592. doi: 10.3389/fimmu.2023.1140592
  • Oken AC, Krishnamurthy I, Savage JC, et al. Molecular pharmacology of P2X receptors: Exploring druggable domains revealed by structural biology. Front Pharmacol. 2022;13:925880. doi: 10.3389/fphar.2022.925880
  • Surprenant A, North RA. Signaling at purinergic P2X receptors. Annu Rev Physiol. 2009;71(1):333–359. doi: 10.1146/annurev.physiol.70.113006.100630
  • Li M, Silberberg SD, Swartz KJ. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3455–63. doi: 10.1073/pnas.1308088110
  • Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem. 2002 Sep 12;45(19):4057–4093. doi: 10.1021/jm020046y
  • Donnelly-Roberts DL, Namovic MT, Han P, et al. Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol. 2009 Aug;157(7):1203–1214. doi: 10.1111/j.1476-5381.2009.00233.x
  • Al-Aqtash R, Ross MS, Collier DM. Extracellular histone proteins activate P2XR7 channel current. JGP. 2023;155(7). doi: 10.1085/jgp.202213317
  • Tomasinsig L, Pizzirani C, Skerlavaj B, et al. The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem. 2008 Nov 7;283(45):30471–30481. doi: 10.1074/jbc.M802185200
  • Elssner A, Duncan M, Gavrilin M, et al. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1β processing and release. J Immunol. 2004;172(8):4987–4994. doi: 10.4049/jimmunol.172.8.4987
  • Chen Q, Jin Y, Zhang K, et al. Alarmin HNP-1 promotes pyroptosis and IL-1β release through different roles of NLRP3 inflammasome via P2X7 in LPS-primed macrophages. Innate Immun. 2014 Apr;20(3):290–300. doi: 10.1177/1753425913490575
  • Wang P, Li G, Gao L, et al. Human β-defensin 2 enhances IL-1β production and pyroptosis through P2X7-mediated NLRP3 expression in macrophages. Biocell. 2022;46(5):1197–1207. doi: 10.32604/biocell.2022.016607
  • Niemi K, Teirilä L, Lappalainen J, et al. Serum amyloid a activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011 Jun 1;186(11):6119–6128. doi: 10.4049/jimmunol.1002843
  • Hopper AT, Juhl M, Hornberg J, et al. Synthesis and characterization of the novel rodent-active and CNS-Penetrant P2X7 receptor antagonist Lu AF27139. J Med Chem. 2021 Apr 22;64(8):4891–4902. doi: 10.1021/acs.jmedchem.0c02249
  • Bradley HJ, Browne LE, Yang W, et al. Pharmacological properties of the rhesus macaque monkey P2X7 receptor. Br J Pharmacol. 2011 Sep;164(2b):743–754. doi: 10.1111/j.1476-5381.2011.01399.x
  • Perez-Medrano A, Donnelly-Roberts DL, Florjancic AS, et al. Synthesis and in vitro activity of N-benzyl-1-(2,3-dichlorophenyl)-1H-tetrazol-5-amine P2X(7) antagonists. Bioorg Med Chem Lett. 2011 Jun 1;21(11):3297–3300. doi: 10.1016/j.bmcl.2011.04.024
  • Kwak SH, Shin S, Lee JH, et al. Synthesis and structure-activity relationships of quinolinone and quinoline-based P2X7 receptor antagonists and their anti-sphere formation activities in glioblastoma cells. Eur J Med Chem. 2018 May 10;151:462–481. doi: 10.1016/j.ejmech.2018.03.023
  • Perez-Medrano A, Donnelly-Roberts DL, Honore P, et al. Discovery and biological evaluation of novel cyanoguanidine P2X(7) antagonists with analgesic activity in a rat model of neuropathic pain. J Med Chem. 2009 May 28;52(10):3366–3376. doi: 10.1021/jm8015848
  • Honore P, Donnelly-Roberts D, Namovic MT, et al. A-740003 [N-(1-{(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther. 2006 Dec;319(3):1376–1385. doi: 10.1124/jpet.106.111559
  • O’Brien-Brown J, Jackson A, Reekie TA, et al. Discovery and pharmacological evaluation of a novel series of adamantyl cyanoguanidines as P2X(7) receptor antagonists. Eur J Med Chem. 2017 Apr 21;130:433–439. doi: 10.1016/j.ejmech.2017.02.060
  • Gonzaga DTG, Ferreira LBG, Moreira Maramaldo Costa TE, et al. 1-Aryl-1H- and 2-aryl-2H-1,2,3-triazole derivatives blockade P2X7 receptor in vitro and inflammatory response in vivo. Eur J Med Chem. 2017 Oct 20;139:698–717. doi: 10.1016/j.ejmech.2017.08.034
  • Li RY, Guo L. Exercise in diabetic nephropathy: protective effects and molecular mechanism. Int J Mol Sci. 2024 Mar 23;25(7):3605. doi: 10.3390/ijms25073605
  • Allsopp RC, Dayl S, Schmid R, et al. Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci Rep. 2017 Apr 7;7(1):725. doi: 10.1038/s41598-017-00732-5
  • Guile SD, Alcaraz L, Birkinshaw TN, et al. Antagonists of the P2X(7) receptor. From lead identification to drug development. J Med Chem. 2009 May 28;52(10):3123–3141. doi: 10.1021/jm801528x
  • Stokes L, Jiang LH, Alcaraz L, et al. Characterization of a selective and potent antagonist of human P2X(7) receptors, AZ11645373. Br J Pharmacol. 2006 Dec;149(7):880–887. doi: 10.1038/sj.bjp.0706933
  • Homerin G, Jawhara S, Dezitter X, et al. Pyroglutamide-based P2X7 receptor antagonists targeting inflammatory bowel disease. J Med Chem. [2020 Mar 12];63(5):2074–2094. doi: 10.1021/acs.jmedchem.9b00584
  • Murphy N, Cowley TR, Richardson JC, et al. The neuroprotective effect of a specific P2X₇ receptor antagonist derives from its ability to inhibit assembly of the NLRP3 inflammasome in glial cells. Brain Pathol. 2012 May;22(3):295–306. doi: 10.1111/j.1750-3639.2011.00531.x
  • Michel AD, Chambers LJ, Walter DS. Negative and positive allosteric modulators of the P2X(7) receptor. Br J Pharmacol. 2008 Feb;153(4):737–750. doi: 10.1038/sj.bjp.0707625
  • Calzaferri F, Narros-Fernández P, de Pascual R, et al. Synthesis and pharmacological evaluation of novel non-nucleotide purine derivatives as P2X7 antagonists for the treatment of neuroinflammation. J Med Chem. 2021 Feb 25;64(4):2272–2290. doi: 10.1021/acs.jmedchem.0c02145
  • Letavic MA, Lord B, Bischoff F, et al. Synthesis and pharmacological characterization of two novel, brain penetrating P2X7 antagonists. ACS Med Chem Lett. 2013 Apr 11;4(4):419–422. doi: 10.1021/ml400040v
  • Patberg M, Isaak A, Füsser F, et al. Piperazine squaric acid diamides, a novel class of allosteric P2X7 receptor antagonists. Eur J Med Chem. 2021 Dec 15;226:113838. doi: 10.1016/j.ejmech.2021.113838
  • Jiang LH, Mackenzie AB, North RA, et al. Brilliant blue G selectively blocks ATP-gated rat P2X(7) receptors. Mol Pharmacol. 2000 Jul;58(1):82–88. doi: 10.1124/mol.58.1.82
  • Lee GE, Joshi BV, Chen W, et al. Synthesis and structure-activity relationship studies of tyrosine-based antagonists at the human P2X7 receptor. Bioorg Med Chem Lett. 2008 Jan 15;18(2):571–575. doi: 10.1016/j.bmcl.2007.11.077
  • Park JH, Lee GE, Lee SD, et al. Discovery of novel 2,5-dioxoimidazolidine-based P2X(7) receptor antagonists as constrained analogues of KN62. J Med Chem. 2015 Mar 12;58(5):2114–2134. doi: 10.1021/jm500324g
  • Yang M, Qiu R, Wang W, et al. P2X7 receptor antagonist attenuates retinal inflammation and neovascularization induced by oxidized low-density lipoprotein. Oxid Med Cell Longev. 2021;2021:1–18. doi: 10.1155/2021/5520644
  • Liu C, Tian Q, Wang J, et al. Blocking P2RX7 attenuates ferroptosis in endothelium and reduces HG-induced hemorrhagic transformation after MCAO by Inhibiting ERK1/2 and P53 signaling pathways. Mol Neurobiol. 2023 Feb;60(2):460–479. doi: 10.1007/s12035-022-03092-y
  • Green JP, Souilhol C, Xanthis I, et al. Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling. Cardiovasc Res. 2018 Feb 1;114(2):324–335. doi: 10.1093/cvr/cvx213
  • Franke H, Günther A, Grosche J, et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol. 2004;63(7):686–699. doi: 10.1093/jnen/63.7.686
  • Li X, Hu B, Wang L, et al. P2X7 receptor-mediated phenotype switching of pulmonary artery smooth muscle cells in hypoxia. Mol Biol Rep. 2021;48(3):2133–2142. doi: 10.1007/s11033-021-06222-2
  • Wang LY, Cai WQ, Chen PH, et al. Downregulation of P2X7 receptor expression in rat oligodendrocyte precursor cells after hypoxia ischemia. Glia. 2009;57(3):307–319. doi: 10.1002/glia.20758
  • Ponnusamy M, Liu N, Gong R, et al. ERK pathway mediates P2X7 expression and cell death in renal interstitial fibroblasts exposed to necrotic renal epithelial cells. Am J Physiol Renal Physiol. 2011 Sep;301(3):F650–9. doi: 10.1152/ajprenal.00215.2011
  • Chen Y, Li G, Huang LY. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons. Mol Pain. 2012 Feb 7;8:9. doi: 10.1186/1744-8069-8-9
  • Comassi M, Santini E, Rossi C, et al. The level of physical training modulates cytokine levels through P2X7 receptor in healthy subjects. Eur J Clin Invest. 2018;48(2):e12880. doi: 10.1111/eci.12880
  • Zhang XJ, Zheng GG, Ma XT, et al. Effects of various inducers on the expression of P2X7 receptor in human peripheral blood mononuclear cells. Sheng Li Xue Bao. 2005 Apr 25;57(2):193–198.
  • Humphreys BD, Dubyak GR. Modulation of P2X7 nucleotide receptor expression by pro- and anti-inflammatory stimuli in THP-1 monocytes. J Leukocyte Biol. 1998 Aug;64(2):265–273. doi: 10.1002/jlb.64.2.265
  • Martínez-Frailes C, Di Lauro C, Bianchi C, et al. Amyloid peptide induced neuroinflammation increases the P2X7 receptor expression in microglial cells, impacting on its functionality. Front Cell Neurosci. 2019;13:143. doi: 10.3389/fncel.2019.00143
  • Bianchi BR, Lynch KJ, Touma E, et al. Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol. 1999 Jul 2;376(1–2):127–138. doi: 10.1016/S0014-2999(99)00350-7
  • Wong J, Gu BJ, Teoh H, et al. Flow cytometry identifies an early stage of platelet apoptosis produced by agonists of the P2X1 and P2X7 receptors. Platelets. 2022 May 19;33(4):621–631. doi: 10.1080/09537104.2021.1981844
  • Lambertucci C, Dal Ben D, Buccioni M, et al. Medicinal chemistry of P2X receptors: agonists and orthosteric antagonists. Curr Med Chem. 2015;22(7):915–928. doi: 10.2174/0929867321666141215093513
  • Jeong J, Kim JY, Hong H, et al. P2RX2 and P2RX4 receptors mediate cation absorption in transitional cells and supporting cells of the utricular macula. Hear Res. 2020 Feb;386:107860. doi: 10.1016/j.heares.2019.107860
  • Sluyter R. The P2X7 receptor. Protein Reviews. 2017;19:17–53.
  • Mishra A, Behura A, Kumar A, et al. P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol. 2021;906:174235. doi: 10.1016/j.ejphar.2021.174235
  • Sathanoori R, Swärd K, Olde B, et al. The ATP receptors P2X7 and P2X4 modulate high glucose and palmitate-induced inflammatory responses in endothelial cells. PLOS ONE. 2015;10(5):e0125111. doi: 10.1371/journal.pone.0125111
  • Solini A, Chiozzi P, Falzoni S, et al. High glucose modulates P2X7 receptor-mediated function in human primary fibroblasts. Diabetologia. 2000 Oct;43(10):1248–1256. doi: 10.1007/s001250051520
  • Platania CBM, Lazzara F, Fidilio A, et al. Blood-retinal barrier protection against high glucose damage: The role of P2X7 receptor. Biochem Pharmacol. 2019 Oct;168:249–258. doi: 10.1016/j.bcp.2019.07.010
  • Qian C, Lu J, Che X, et al. P2X7R/AKT/mTOR signaling mediates high glucose-induced decrease in podocyte autophagy. Free Radic Biol Med. 2023 Aug 1;204:337–346. doi: 10.1016/j.freeradbiomed.2023.05.015
  • Zhu Y, Li Q, Xun W, et al. Blocking P2X7 receptor ameliorates oxidized LDL-mediated podocyte apoptosis. Mol Biol Rep. 2019 Aug;46(4):3809–3816. doi: 10.1007/s11033-019-04823-6
  • Bibič L, Stokes L. Revisiting the idea that amyloid-β peptide acts as an agonist for P2X7. Front Mol Neurosci. 2020;13:166. doi: 10.3389/fnmol.2020.00166
  • Elssner A, Duncan M, Gavrilin M, et al. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol. 2004 Apr 15;172(8):4987–4994. doi: 10.4049/jimmunol.172.8.4987
  • Ikutama R, Peng G, Tsukamoto S, et al. Cathelicidin LL-37 activates human keratinocyte autophagy through the P2X₇, mechanistic target of rapamycin, and MAPK pathways. J Invest Dermatol. 2023 May;143(5):751–761.e7. doi: 10.1016/j.jid.2022.10.020
  • Byfield FJ, Wen Q, Leszczynska K, et al. Cathelicidin LL-37 peptide regulates endothelial cell stiffness and endothelial barrier permeability. Am J Physiol Cell Physiol. 2011 Jan;300(1):C105–12. doi: 10.1152/ajpcell.00158.2010
  • Chen Q, Yang Y, Hou J, et al. Increased gene copy number of DEFA1/DEFA3 worsens sepsis by inducing endothelial pyroptosis. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3161–3170. doi: 10.1073/pnas.1812947116
  • Christenson K, Björkman L, Tängemo C, et al. Serum amyloid a inhibits apoptosis of human neutrophils via a P2X7-sensitive pathway independent of formyl peptide receptor-like 1. J Leukocyte Biol. 2008 Jan;83(1):139–148. doi: 10.1189/jlb.0507276
  • Facci L, Barbierato M, Zusso M, et al. Serum amyloid a primes microglia for ATP-dependent interleukin-1β release. J Neuroinflammation. 2018 May 26;15(1):164. doi: 10.1186/s12974-018-1205-6
  • Di Virgilio F, Giuliani AL, Vultaggio-Poma V, et al. Non-nucleotide agonists triggering P2X7 receptor activation and pore formation. Front Pharmacol. 2018;9:39. doi: 10.3389/fphar.2018.00039
  • Kossel A, Thorpe WV. The Protamines and Histones. London: Longmans, Green and Co; 1928.
  • Mariño-Ramírez L, Kann MG, Shoemaker BA, et al. Histone structure and nucleosome stability. Expert Rev Proteomics. 2005 Oct;2(5):719–729. doi: 10.1586/14789450.2.5.719
  • Millán-Zambrano G, Burton A, Bannister AJ, et al. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet. 2022 Sep;23(9):563–580. doi: 10.1038/s41576-022-00468-7
  • Zhang Y, Sun Z, Jia J, et al. Overview of histone modification. Adv Exp Med Biol. 2021;1283:1–16.
  • Li Y, Wan D, Luo X, et al. Circulating histones in sepsis: potential outcome predictors and therapeutic targets. Front Immunol. 2021;12:650184. doi: 10.3389/fimmu.2021.650184
  • de Vries F, Huckriede J, Wichapong K, et al. The role of extracellular histones in COVID-19. J Intern Med. 2023 Mar;293(3):275–292. doi: 10.1111/joim.13585
  • Kutcher ME, Xu J, Vilardi RF, et al. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg. 2012;73(6):1389–1394. doi: 10.1097/TA.0b013e318270d595
  • Silk E, Zhao H, Weng H, et al. The role of extracellular histone in organ injury. Cell Death Dis. 2017;8(5):e2812–e2812. doi: 10.1038/cddis.2017.52
  • Li X, Ye Y, Peng K, et al. Histones: The critical players in innate immunity. Front Immunol. 2022;13:1030610. doi: 10.3389/fimmu.2022.1030610
  • Tsoneva DK, Ivanov MN, Conev NV, et al. Circulating histones to detect and monitor the progression of cancer. Int J Mol Sci. 2023 Jan 4;24(2):942. doi: 10.3390/ijms24020942
  • Wesierska‐Gadek J, Penner E, Lindner H, et al. Autoantibodies against different histone hi subtypes in systemic lupus erythematosus sera. Wiley Online Library; 1990. Vol. 33. p. 1273–1278. doi:10.1002/art.1780330830
  • Raska I, Petrasovicova V, Jarnik M, et al. [Autoantibodies against histones and actin determined by western blotting in patients with rheumatic diseases]. Cas Lek Cesk. 1990;129(47):1495–1500.
  • Chen R, Kang R, Fan X, et al. Release and activity of histone in diseases. Cell Death Dis. 2014;5(8):e1370–e1370. doi: 10.1038/cddis.2014.337
  • Nair RR, Mazza D, Brambilla F, et al. LPS-challenged macrophages release microvesicles coated with histones. Front Immunol. 2018;9:1463. doi: 10.3389/fimmu.2018.01463
  • Murao A, Aziz M, Wang H, et al. Release mechanisms of major DAMPs. Apoptosis. 2021;26(3–4):152–162. doi: 10.1007/s10495-021-01663-3
  • Allam R, Darisipudi MN, Tschopp J, et al. Histones trigger sterile inflammation by activating the NLRP 3 inflammasome. Eur J Immunol. 2013;43(12):3336–3342. doi: 10.1002/eji.201243224
  • Bell DA, Morrison B, VandenBygaart P. Immunogenic DNA-related factors. Nucleosomes spontaneously released from normal murine lymphoid cells stimulate proliferation and immunoglobulin synthesis of normal mouse lymphocytes. J Clin Investig. 1990;85(5):1487–1496. doi: 10.1172/JCI114595
  • Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nature Med. 2009;15(11):1318–1321. doi: 10.1038/nm.2053
  • Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–3931.
  • Hoeksema M, van Eijk M, Haagsman HP, et al. Histones as mediators of host defense, inflammation and thrombosis. Future Microbiol. 2016;11(3):441–453. doi: 10.2217/fmb.15.151
  • Elsbach P. What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? J Clin Invest. 2003 Jun;111(11):1643–1645. doi: 10.1172/JCI18761
  • Abrams ST, Zhang N, Manson J, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013 Jan 15;187(2):160–169. doi: 10.1164/rccm.201206-1037OC
  • Xu J, Zhang X, Monestier M, et al. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011 Sep 1;187(5):2626–2631. doi: 10.4049/jimmunol.1003930
  • Hsieh T, Vaickus MH, Stein TD, et al. The Role of Substance P in Pulmonary Clearance of Bacteria in Comparative Injury Models. Am J Pathol. 2016 Dec;186(12):3236–3245. doi: 10.1016/j.ajpath.2016.08.014
  • Vaickus M, Hsieh T, Kintsurashvili E, et al. Mild Traumatic Brain Injury in Mice Beneficially Alters Lung NK1R and Structural Protein Expression to Enhance Survival after Pseudomonas aeruginosa Infection. Am J Pathol. 2019 Feb;189(2):295–307. doi: 10.1016/j.ajpath.2018.10.019
  • Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017 Mar 7;23(3):279–287. doi: 10.1038/nm.4294
  • Leppkes M, Knopf J, Naschberger E, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020 Aug;58:102925. doi: 10.1016/j.ebiom.2020.102925
  • Arcanjo A, Logullo J, Menezes CCB, et al. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci Rep. 2020 Nov 12;10(1):19630. doi: 10.1038/s41598-020-76781-0
  • Wang J, Li Q, Yin Y, et al. Excessive Neutrophils and Neutrophil Extracellular Traps in COVID-19. Front Immunol. 2020;11:2063. doi: 10.3389/fimmu.2020.02063
  • Kleine TJ, Lewis PN, Lewis SA. Histone-induced damage of a mammalian epithelium: the role of protein and membrane structure. Am J physiol. 1997 Dec;273(6):C1925–36. doi: 10.1152/ajpcell.1997.273.6.C1925
  • Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis. 2016 Dec 8;7(12):e2518. doi: 10.1038/cddis.2016.410
  • Gillrie MR, Lee K, Gowda DC, et al. Plasmodium falciparum histones induce endothelial proinflammatory response and barrier dysfunction. Am J Pathol. 2012 Mar;180(3):1028–1039. doi: 10.1016/j.ajpath.2011.11.037
  • Rosenbluh J, Hariton-Gazal E, Dagan A, et al. Translocation of histone proteins across lipid bilayers and Mycoplasma membranes. J Mol Biol. 2005 Jan 14;345(2):387–400. doi: 10.1016/j.jmb.2004.10.046
  • Hariton-Gazal E, Rosenbluh J, Graessmann A, et al. Direct translocation of histone molecules across cell membranes. J Cell Sci. 2003 Nov 15;116(Pt 22):4577–4586. doi: 10.1242/jcs.00757
  • Cockcroft S. Mammalian lipids: structure, synthesis and function. Essays Biochem. 2021 Nov 2;65(5):813–845. doi: 10.1042/EBC20200067
  • Collier DM, Villalba N, Sackheim A, et al. Extracellular histones induce calcium signals in the endothelium of resistance-sized mesenteric arteries and cause loss of endothelium-dependent dilation. Am J Physiol Heart Circ Physiol. 2019 Jun 1;316(6):H1309–H1322. doi: 10.1152/ajpheart.00655.2018
  • Illes P, Muller CE, Jacobson KA, et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol. 2021 Feb;178(3):489–514. doi: 10.1111/bph.15299
  • Müller CE, Namasivayam V. Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signal. 2021 Dec;17(4):633–648. doi: 10.1007/s11302-021-09813-7
  • Han S, Suzuki-Kerr H, Vlajkovic SM, et al. The developmental journey of therapies targeting purine receptors: from basic science to clinical trials. Purinergic Signal. 2022 Dec;18(4):435–450. doi: 10.1007/s11302-022-09896-w
  • Wang J, Wang Y, Cui WW, et al. Druggable negative allosteric site of P2X3 receptors. Proc Natl Acad Sci U S A. 2018 May 8;115(19):4939–4944. doi: 10.1073/pnas.1800907115
  • Shen C, Zhang Y, Cui W, et al. Structural insights into the allosteric inhibition of P2X4 receptors. Nat Commun. 2023 Oct 13;14(1):6437. doi: 10.1038/s41467-023-42164-y
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605–1612. doi: 10.1002/jcc.20084
  • Hedden L, Benes CH, Soltoff SP. P2X7 receptor antagonists display agonist-like effects on cell signaling proteins. Biochim Biophys Acta Gen Subj. 2011 05 01;1810(5):532–542. doi: 10.1016/j.bbagen.2011.03.009
  • Melani A, Amadio S, Gianfriddo M, et al. P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab. 2006;26(7):974–982. doi: 10.1038/sj.jcbfm.9600250
  • Kasuya G, Yamaura T, Ma XB, et al. Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. Nat Commun. 2017 Oct 12;8(1):876. doi: 10.1038/s41467-017-00887-9
  • Donnelly-Roberts DL, Jarvis MF. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol. 2007 Jul;151(5):571–579. doi: 10.1038/sj.bjp.0707265
  • Honore P, Donnelly-Roberts D, Namovic M, et al. The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-1alphabeta knockout mice. Behav Brain Res. 2009 Dec 1;204(1):77–81. doi: 10.1016/j.bbr.2009.05.018
  • Michel AD, Ng SW, Roman S, et al. Mechanism of action of species-selective P2X(7) receptor antagonists. Br J Pharmacol. 2009 Apr;156(8):1312–1325. doi: 10.1111/j.1476-5381.2009.00135.x
  • Menzies RI, Howarth AR, Unwin RJ, et al. Inhibition of the purinergic P2X7 receptor improves renal perfusion in angiotensin-II-infused rats. Kidney Int. 2015 Nov;88(5):1079–1087. doi: 10.1038/ki.2015.182
  • Bhattacharya A, Wang Q, Ao H, et al. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol. 2013 Oct;170(3):624–640. doi: 10.1111/bph.12314
  • Lord B, Aluisio L, Shoblock JR, et al. Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432. J Pharmacol Exp Ther. 2014 Dec;351(3):628–641. doi: 10.1124/jpet.114.218487
  • Gargett CE, Wiley JS. The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol. 1997 Apr;120(8):1483–1490. doi: 10.1038/sj.bjp.0701081
  • Van Weehaeghe D, Koole M, Schmidt ME, et al. [(11)C]JNJ54173717, a novel P2X7 receptor radioligand as marker for neuroinflammation: human biodistribution, dosimetry, brain kinetic modelling and quantification of brain P2X7 receptors in patients with Parkinson’s disease and healthy volunteers. Eur J Nucl Med Mol Imaging. 2019 Sep;46(10):2051–2064. doi: 10.1007/s00259-019-04369-6
  • Lord B, Ameriks MK, Wang Q, et al. A novel radioligand for the ATP-gated ion channel P2X7: [3H] JNJ-54232334. Eur J Pharmacol. 2015 Oct 15;765:551–559. doi: 10.1016/j.ejphar.2015.09.026
  • Gao M, Wang M, Green MA, et al. Synthesis of [11C]GSK1482160 as a new PET agent for targeting P2X7 receptor. Bioorganic Med Chem Lett. 2015 May 01;25(9):1965–1970. doi: 10.1016/j.bmcl.2015.03.021
  • Jackson A, Werry EL, O’Brien-Brown J, et al. Pharmacological characterization of a structural hybrid P2X7R antagonist using ATP and LL-37. Eur J Pharmacol. 2022;914:174667. doi: 10.1016/j.ejphar.2021.174667
  • Al-Aqtash R, Ross MS, Collier DM. Extracellular histone proteins activate P2XR7 channel current. J Gen Physiol. 2023 Jul 3;155(7). doi: 10.1085/jgp.202213317
  • Di Virgilio F, Dal Ben D, Sarti AC, et al. The P2X7 Receptor in Infection and Inflammation. Immunity. 2017 Jul 18;47(1):15–31. doi: 10.1016/j.immuni.2017.06.020
  • Illes P. P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci. 2020 Aug 20;21(17):5996. doi: 10.3390/ijms21175996
  • Hunt A, Qian V, Olds H, et al. The Current Clinical Trial Landscape for Hidradenitis Suppurativa: A Narrative Review. Dermatol Ther (Heidelb). 2023 Jul;13(7):1391–1407. doi: 10.1007/s13555-023-00935-x
  • Recourt K, de Boer P, van der Ark P, et al. Characterization of the central nervous system penetrant and selective purine P2X7 receptor antagonist JNJ-54175446 in patients with major depressive disorder. Transl Psychiatry. 2023 Jul 24;13(1):266. doi: 10.1038/s41398-023-02557-5
  • Bhattacharya A, Lord B, Grigoleit JS, et al. Neuropsychopharmacology of JNJ-55308942: evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology. 2018 Dec;43(13):2586–2596. doi: 10.1038/s41386-018-0141-6
  • Stock TC, Bloom BJ, Wei N, et al. Efficacy and safety of CE-224,535, an antagonist of P2X7 receptor, in treatment of patients with rheumatoid arthritis inadequately controlled by methotrexate. J Rheumatol. 2012 Apr;39(4):720–727. doi: 10.3899/jrheum.110874
  • Keystone EC, Wang MM, Layton M, et al. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis. 2012 Oct;71(10):1630–1635. doi: 10.1136/annrheumdis-2011-143578
  • Ali Z, Laurijssens B, Ostenfeld T, et al. Pharmacokinetic and pharmacodynamic profiling of a P2X7 receptor allosteric modulator GSK1482160 in healthy human subjects. Br J Clin Pharmacol. 2013 Jan;75(1):197–207. doi: 10.1111/j.1365-2125.2012.04320.x
  • Gilbert SM, Gidley Baird A, Glazer S, et al. A phase I clinical trial demonstrates that nfP2X(7) -targeted antibodies provide a novel, safe and tolerable topical therapy for basal cell carcinoma. Br J Dermatol. 2017 Jul;177(1):117–124. doi: 10.1111/bjd.15364
  • Baeza-Raja B, Goodyear A, Liu X, et al. Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis. PLoS One. 2020;15(6):e0234038. doi: 10.1371/journal.pone.0234038
  • Shokoples BG, Paradis P, Schiffrin EL. P2X7 Receptors: An Untapped Target for the Management of Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):186–199. doi: 10.1161/ATVBAHA.120.315116
  • Zeng D, Yao P, Zhao H. P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol. 2019 Mar;234(3):2095–2103. doi: 10.1002/jcp.27544
  • Hu SQ, Hu JL, Zou FL, et al. P2X7 receptor in inflammation and pain. Brain Res Bull. 2022 Sep;187:199–209. doi: 10.1016/j.brainresbull.2022.07.006
  • Bandara V, Foeng J, Gundsambuu B, et al. Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7. Nat Commun. 2023 Sep 8;14(1):5546. doi: 10.1038/s41467-023-41338-y
  • Jiang L-H. Inhibition of P2X7 receptors by divalent cations: old action and new insight. Eur Biophys J. 2009;38(3):339–346. doi: 10.1007/s00249-008-0315-y
  • Li M, Silberberg SD, Swartz KJ. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. Proc Nat Acad Sci. 2013;110(36):E3455–E3463. doi: 10.1073/pnas.1308088110
  • Kasuya G, Fujiwara Y, Takemoto M, et al. Structural insights into divalent cation modulations of ATP-gated P2X receptor channels. Cell Rep. 2016;14(4):932–944. doi: 10.1016/j.celrep.2015.12.087
  • Fujiwara M, Ohbori K, Ohishi A, et al. Species difference in sensitivity of human and mouse P2X7 receptors to inhibitory effects of divalent metal cations. Biol Pharm Bull. 2017;40(3):375–380. doi: 10.1248/bpb.b16-00887
  • Robinson LE, Shridar M, Smith P, et al. Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization. J Biol Chem. 2014 Nov 14;289(46):31983–31994. doi: 10.1074/jbc.M114.574699
  • Murrell-Lagnado RD. Regulation of P2X Purinergic Receptor Signaling by Cholesterol. Curr Top Membr. 2017;80:211–232.
  • Chessell IP, Hatcher JP, Bountra C, et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain. 2005 Apr 01;114(3):386–396. doi: 10.1016/j.pain.2005.01.002
  • Nicke A, Kuan Y-H, Masin M, et al. A Functional P2X7 Splice Variant with an Alternative Transmembrane Domain 1 Escapes Gene Inactivation in P2X7 Knock-out Mice*. J Biol Chem. 2009 Sep 18;284(38):25813–25822. doi: 10.1074/jbc.M109.033134
  • Solle M, Labasi J, Perregaux DG, et al. Altered Cytokine Production in Mice Lacking P2X7Receptors*. J Biol Chem. 2001 Jan 05;276(1):125–132. doi: 10.1074/jbc.M006781200
  • Masin M, Young C, Lim K, et al. Expression, assembly and function of novel C-terminal truncated variants of the mouse P2X7 receptor: re-evaluation of P2X7 knockouts. Br J Pharmacol. 2012 Feb;165(4):978–993. doi: 10.1111/j.1476-5381.2011.01624.x
  • Basso AM, Bratcher NA, Harris RR, et al. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: Relevance for neuropsychiatric disorders. Behav Brain Res. 2009 Mar 02;198(1):83–90. doi: 10.1016/j.bbr.2008.10.018
  • Sluyter R, Adriouch S, Fuller SJ, et al. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci. [2023 May 4];24(9):8225. doi: 10.3390/ijms24098225
  • Urbina-Trevino L, von Mucke-Heim IA, Deussing JM. P2X7 Receptor-Related Genetic Mouse Models - Tools for Translational Research in Psychiatry. Front Neural Circuits. 2022;16:876304. doi: 10.3389/fncir.2022.876304
  • Bartlett R, Stokes L, Sluyter R, et al. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev. 2014;66(3):638–675. doi: 10.1124/pr.113.008003