305
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Production and mechanism analysis of clean coal from low-rank coal

, , , , , , & show all
Pages 451-467 | Received 14 Dec 2022, Accepted 29 Mar 2023, Published online: 10 Apr 2023

References

  • Ambikadevi, V. R., and M. Lalithambika. 2000. Effect of organic acids on ferric iron removal from iron-stained kaolinite. Applied Clay Science 16:133–45. doi:10.1016/S0169-1317(99)00038-1.
  • Astuti, W., T. Hirajima, K. Sasaki, and N. Okibe. 2016. Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Minerals Engineering 85:1–16. doi:10.1016/j.mineng.2015.10.001.
  • Behera, S. S., and P. K. Parhi. 2016. Leaching kinetics study of neodymium from the scrap magnet using acetic acid. Separation and Purification Technology 160:59–66. doi:10.1016/j.seppur.2016.01.014.
  • Bläsing, M., and M. Müller. 2013. Investigation of the effect of alkali metal sorbents on the release and capture of trace elements during combustion of straw. Combustion and Flame 160 (12):3015–20. doi:10.1016/j.combustflame.2013.08.005.
  • Chen, B., S. X. Bao, and Y. M. Zhang. 2021. Synergetic strengthening mechanism of ultrasound combined with calcium fluoride towards vanadium extraction from low-grade vanadium-bearing shale. International Journal of Mining Science and Technology 31 (6):1095–106. doi:10.1016/j.ijmst.2021.07.008.
  • Chen, J., Y. Ninomiya, H. Naganuma, Y. Sasaki, M. Noguchi, H. Cho, Y. Ueki, R. Yoshiie, and I. Naruse. 2016. Development of thermal spraying materials through several corrosion tests for heat exchanger tube of incinerators. Fuel Processing Technology 141:216–24. doi:10.1016/j.fuproc.2015.08.040.
  • Ding, L. Z., Y. X. Gao, X. Li, W. H. Wang, Y. Xue, X. Q. Zhu, K. Xu, H. Y. Hu, G. Q. Luo, I. Naruse, et al. 2019. A novel CO2-water leaching method for AAEM removal from Zhundong coal. Fuel 237:786–92. doi:10.1016/j.fuel.2018.10.084.
  • Gao, Y. X., L. Z. Ding, X. Li, W. H. Wang, Y. Xue, X. Q. Zhu, H. Y. Hu, G. Q. Luo, I. Naruse, Z. Q. Bai, et al. 2017. Na&ca removal from Zhundong coal by a novel CO2-water leaching method and the ashing behavior of the leached coal. Fuel 210:8–14. doi:10.1016/j.fuel.2017.08.046.
  • Gao, Z. L., X. S. Chai, E. H. Zhou, Y. Jia, C. L. Duan, and L. G. Tang. 2020. Effect of the distributor plugging ways on fluidization quality and particle stratification in air dense medium fluidized bed. International Journal of Mining Science and Technology 30 (6):883–88. doi:10.1016/j.ijmst.2020.07.001.
  • Ge, L. C., Y. W. Zhang, C. Xu, Z. H. Wang, J. H. Zhou, and K. F. Cen. 2015. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals. Applied Thermal Engineering 90:174–81. doi:10.1016/j.applthermaleng.2015.07.015.
  • Guo, H. J., K. Wang, Y. C. Wu, H. L. Tang, J. G. Wu, L. H. Guan, C. Y. Chang, and C. Xu. 2021. Evaluation of the weakening behavior of gas on the coal strength and its quantitative influence on the coal deformation. International Journal of Mining Science and Technology 31 (3):451–62. doi:10.1016/j.ijmst.2021.03.005.
  • Guo, M. Y., Y. M. Zhao, J. W. Guo, E. Byambajav, G. H. Yan, Z. X. Zhang, P. F. Zhao, Z. H. Ni, and B. Zhang. 2022. Removal behavior and mechanism of AAEMs and Fe in Zhundong coal under acidic ionic liquid system. Fuel 320:123997. doi:10.1016/j.fuel.2022.123997.
  • Guo, S., X. Zhou, S. S. Song, Y. G. Mei, J. T. Zhao, and Y. T. Fang. 2017. Optimization of leaching conditions for removing sodium from sodium-rich coals by orthogonal experiments. Fuel 208:499–507. doi:10.1016/j.fuel.2017.07.032.
  • Hu, H. S., M. Li, L. L. Li, and X. X. Tao. 2020. Improving bubble-particle attachment during the flotation of low rank coal by surface modification. International Journal of Mining Science and Technology 30 (2):217–23. doi:10.1016/j.ijmst.2019.04.001.
  • Hu, P. C., Y. M. Zhang, J. Huang, T. Liu, Y. Z. Yuan, and N. N. Xue. 2018. Eco-friendly leaching and separation of vanadium over iron impurity from vanadium-bearing shale using oxalic acid as a leachant. ACS Sustainable Chemistry & Engineering 6 (2):1900–08. doi:10.1021/acssuschemeng.7b03311.
  • Kang, Q., Y. M. Zhang, and S. X. Bao. 2019a. Cleaning method of vanadium precipitation from stripped vanadium solution using oxalic acid. Powder Technology 355:667–74. doi:10.1016/j.powtec.2019.07.056.
  • Kang, Q., Y. M. Zhang, and S. X. Bao. 2019b. An environmentally friendly hydrothermal method of vanadium precipitation with the application of oxalic acid. HYDROMETALLURGY 185:125–32. doi:10.1016/j.hydromet.2019.01.011.
  • Li, G. Y., C. A. Wang, Y. Yan, X. Jin, Y. H. Liu, and D. F. Che. 2016. Release and transformation of sodium during combustion of Zhundong coals. Journal of the Energy Institute 89 (1):48–56. doi:10.1016/j.joei.2015.01.011.
  • Li, L., W. J. Qu, X. X. Zhang, J. Lu, R. J. Chen, F. Wu, and K. Amine. 2015. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources 282:544–51. doi:10.1016/j.jpowsour.2015.02.073.
  • Li, Y. H., H. Y. Zhao, X. Sui, X. M. Wang, and H. B. Ji. 2022. Studies on individual pyrolysis and co-pyrolysis of peat–biomass blends: Thermal decomposition behavior, possible synergism, product characteristic evaluations and kinetics. Fuel 310:122280. doi:10.1016/j.fuel.2021.122280.
  • Lin, S. M., Y. L. Yu, Z. J. Zhang, C. Y. Zhang, M. F. Zhong, L. M. Wang, S. X. Lu, W. Xu, N. Li, and X. Huang. 2020. The synergistic mechanisms of citric acid and oxalic acid on the rapid dissolution of kaolinite. Applied Clay Science 196:105756. doi:10.1016/j.clay.2020.105756.
  • Liu, F. P., Z. H. Liu, Y. H. Li, B. P. Wilson, and M. Lundström. 2017. Extraction of Ga and Ge from zinc refinery residues in H2C2O4 solutions containing H2O2. International Journal of Mineral Processing 163:14–23. doi:10.1016/j.minpro.2017.04.005.
  • Ma, D. G., M. Z. Su, J. J. Qian, Q. Wang, F. Y. Meng, X. M. Ge, Y. Ye, and C. F. Song. 2020. Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Separation and Purification Technology 242:116822. doi:10.1016/j.seppur.2020.116822.
  • Mohanty, C., S. S. Behera, B. Marandi, S. K. Tripathy, P. K. Parhi, and K. Sanjay. 2021. Citric acid mediated leaching kinetics study and comprehensive investigation on extraction of vanadium (V) from the spent catalyst. Separation and Purification Technology 276:119377. 119377. doi:10.1016/j.seppur.2021.119377.
  • Ninomiya, Y., Q. Y. Wang, S. Y. Xu, K. Mizuno, and I. Awaya. 2009. Effect of additives on the reduction of PM2.5 emissions during pulverized coal combustion†. Energy & Fuels 23 (7):3412–17. doi:10.1021/ef801020r.
  • Qian, L., C. Tao, C. Ma, J. K. Xue, F. Q. Guo, X. P. Jia, and W. J. Yan. 2022. Construction of a macromolecular structure model for zhundong subbituminous coal. Journal of Molecular Structure 1248:131496. doi:10.1016/j.molstruc.2021.131496.
  • Shi, G. Q., J. M. Qi, Y. M. Wang, and H. Y. Shen. 2021. Synergistic influence of noncationic surfactants on the wettability and functional groups of coal. Powder Technology 385:92–105. doi:10.1016/j.powtec.2021.02.056.
  • Wang, C. A., Y. H. Zhang, P. Q. Wang, J. P. Zhang, Y. B. Du, and D. F. Che. 2018. Effects of silicoaluminate oxide and coal blending on combustion behaviors and kinetics of zhundong coal under oxy-fuel condition. Journal of Thermal Analysis and Calorimetry 134 (3):1975–86. doi:10.1007/s10973-018-7627-7.
  • Wang, J. Q., G. X. Zhang, F. Li, and Z. H. Chi. 2019. Lyophobicity and slagging resistance mechanism of h-BN based coating for coal-fired boilers. Fuel Processing Technology 188:43–50. doi:10.1016/j.fuproc.2019.02.012.
  • Wang, X. B., Z. X. Xu, B. Wei, L. Zhang, H. Z. Tan, T. Yang, H. Mikulčić, and N. Duić. 2015. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing. Applied Thermal Engineering 80:150–59. doi:10.1016/j.applthermaleng.2015.01.051.
  • Wijaya, N., T. K. Choo, and L. Zhang. 2011. Generation of ultra-clean coal from Victorian brown coal — Sequential and single leaching at room temperature to elucidate the elution of individual inorganic elements. Fuel Processing Technology 92 (11):2127–37. doi:10.1016/j.fuproc.2011.05.022.
  • Wijaya, N., and L. Zhang. 2011. A critical review of coal demineralization and its implication on understanding the speciation of organically bound metals and submicrometer mineral grains in coal. Energy & Fuels 25 (1):1–16. doi:10.1021/ef1008192.
  • Xiong, Z., Y. X. Gao, X. Li, L. Z. Ding, G. Q. Luo, D. X. Yu, X. Yu, and H. Yao. 2020. A novel CO2-water leaching method for AAEM removal from coal: Suppression of PM formation and release during Zhundong coal combustion. Fuel 271:117689. doi:10.1016/j.fuel.2020.117689.
  • Xu, L. L., J. Liu, Y. Kang, Y. Q. Miao, W. Ren, and T. T. Wang. 2014. Safely burning high alkali coal with kaolin additive in a pulverized fuel boiler. Energy & Fuels 28 (9):5640–48. doi:10.1021/ef501160f.
  • Xu, L. L., H. Y. Yang, Y. J. Liu, and Y. P. Zhou. 2019. Uranium leaching using citric acid and oxalic acid. Journal of Radioanalytical and Nuclear Chemistry 321 (3):815–22. doi:10.1007/s10967-019-06673-9.
  • Xu, M. L., S. M. Kang, F. Jiang, X. Y. Yan, Z. B. Zhu, Q. P. Zhao, Y. X. Teng, and Y. Wang. 2021. A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid. RSC Advances 11 (44):27689–700. doi:10.1039/d1ra04979h.
  • Yang, J. B., E. S. Fan, J. Lin, F. Arshad, X. D. Zhang, H. Y. Wang, F. Wu, R. J. Chen, and L. Li. 2021. Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching. ACS Applied Energy Materials 4 (6):6261–68. doi:10.1021/acsaem.1c01029.
  • Yang, Y. M., Y. X. Wu, H. Zhang, M. Zhang, Q. Liu, H. R. Yang, and J. F. Lu. 2016. Improved sequential extraction method for determination of alkali and alkaline earth metals in Zhundong coals. Fuel 181:951–57. doi:10.1016/j.fuel.2016.05.014.
  • Yu, Y. B., H. T. Yang, W. M. Cheng, C. W. Gao, L. Zheng, and Q. L. Xin. 2021. Effect of acetic acid concentration on functional group and microcrystalline structure of bituminous coal. Fuel 288:119711. doi:10.1016/j.fuel.2020.119711.
  • Yu, Z. H., J. Jin, F. X. Hou, Y. P. Zhang, G. X. Wang, B. J. Z. Liu, and Z. Y. Zhai. 2021. Understanding effect of phosphorus-based additive on ash deposition characteristics during high-sodium and high-calcium Zhundong coal combustion in drop-tube furnace. Fuel 287:119462. doi:10.1016/j.fuel.2020.119462.
  • Zhang, X. P., C. Zhang, P. Tan, X. Li, Q. Y. Fang, and G. Chen. 2018. Effects of hydrothermal upgrading on the physicochemical structure and gasification characteristics of Zhundong coal. Fuel Processing Technology 172:200–08. doi:10.1016/j.fuproc.2017.12.014.
  • Zhao, H. Y., Q. Song, S. C. Liu, Y. H. Li, X. H. Wang, and X. Q. Shu. 2018. Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism. Energy Conversion and Management 161:13–26. doi:10.1016/j.enconman.2018.01.083.
  • Zhou, H., B. Zhou, L. T. Li, and H. L. Zhang. 2013. Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhun Dong Coal) in a 300 KW test furnace. Energy & Fuels 27 (11):7008–22. doi:10.1021/ef4012017.
  • Zhou, J. B., X. G. Zhuang, A. Alastuey, X. Querol, and J. H. Li. 2010. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China. International Journal of Coal Geology 82 (1–2):51–67. doi:10.1016/j.coal.2009.12.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.