100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the quantitative evaluation method of coal combustion situation in O2-CO2-N2 atmospheres based on dynamic artificial neural network

, ORCID Icon, , , &
Pages 519-541 | Received 16 Dec 2022, Accepted 02 May 2023, Published online: 10 May 2023

References

  • Ahmad, M. S., H. Liu, H. Alhumade, M. H. Tahir, G. Çakman, A. Yıldız, S. Ceylan, A. Elkamel, and B. Shen. 2020. A modified DAEM: To study the bioenergy potential of invasive Staghorn Sumac through pyrolysis, ANN, TGA, kinetic modeling, FTIR and GC–MS analysis. Energy Conversion and Management 221:113173. doi:10.1016/j.enconman.2020.113173.
  • Barzegar, R., A. Yozgatligil, and A. T. Atimtay. 2019. Combustion characteristics of Turkish lignites at oxygen-enriched and oxy-fuel combustion conditions. Journal of the Energy Institute 92:1440–50. doi:10.1016/j.joei.2018.08.007.
  • Bell, F., S. Bullock, T. Hälbich, and P. Lindsay. 2001. Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. International Journal of Coal Geology 45:195–216. doi:10.1016/S0166-5162(00)00033-1.
  • Bong, J. T., A. C. M. Loy, B. L. F. Chin, M. K. Lam, D. K. H. Tang, H. Y. Lim, Y. H. Chai, and S. Yusup. 2020. Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst. Energy 207:118289. doi:10.1016/j.energy.2020.118289.
  • Chatterjee, R. 2006. Coal fire mapping from satellite thermal IR data–A case example in Jharia Coalfield, Jharkhand, India. ISPRS Journal of Photogrammetry and Remote Sensing 60:113–28. doi:10.1016/j.isprsjprs.2005.12.002.
  • Chen, J., J. Liu, Y. He, L. Huang, S. Sun, J. Sun, K. Chang, J. Kuo, S. Huang, and X. Ning. 2017. Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresource Technology 225:234–45. doi:10.1016/j.biortech.2016.11.069.
  • Chen, R., Q. Li, Y. Zhang, X. Xu, and D. Zhang. 2019. Pyrolysis kinetics and mechanism of typical industrial non-tyre rubber wastes by peak-differentiating analysis and multi kinetics methods. Fuel 235:1224–37. doi:10.1016/j.fuel.2018.08.121.
  • Chen, L. Z., X. Y. Qi, Y. B. Zhang, Y. X. Rao, and T. Wang. 2022. Gasification characteristics and thermodynamic analysis of ultra-lean oxygen oxidized lignite residues. Energy 240. doi:10.1016/j.energy.2021.122796.
  • Chen, J., C. Xie, J. Liu, Y. He, W. Xie, X. Zhang, K. Chang, J. Kuo, J. Sun, and L. Zheng. 2018. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresource Technology 250:230–38. doi:10.1016/j.biortech.2017.11.031.
  • Cui, Y. Q., H. F. Liu, Q. L. Wang, Z. Q. Zheng, H. Wang, Z. Y. Yue, Z. Y. Ming, M. S. Wen, L. Feng, and M. F. Yao. 2022. Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network. Combustion and Flame 237. doi:10.1016/j.combustflame.2021.111852.
  • Deng, J., F. Zhou, B. Shi, J. L. Torero, H. Qi, P. Liu, S. Ge, Z. Wang, and C. Chen. 2020. Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China. Energy 207:118303. doi:10.1016/j.energy.2020.118303.
  • Engin, B., and H. Atakul. 2018. Air and oxy-fuel combustion kinetics of low rank lignites. Journal of the Energy Institute 91:311–22. doi:10.1016/j.joei.2016.11.004.
  • Govindan, B., S. C. B. Jakka, T. K. Radhakrishnan, A. K. Tiwari, T. M. Sudhakar, P. Shanmugavelu, A. K. Kalburgi, A. Sanyal, and S. Sarkar. 2018. Investigation on kinetic parameters of combustion and oxy-combustion of calcined pet coke employing thermogravimetric analysis coupled to artificial neural network modeling. Energy & Fuels 32:3995–4007. doi:10.1021/acs.energyfuels.8b00223.
  • Guo, F., Y. He, A. Hassanpour, J. Gardy, and Z. Zhong. 2020. Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy 197:117147. doi:10.1016/j.energy.2020.117147.
  • Guurel, K., D. Magalhaes, and F. Kazanc. 2022. The effect of torrefaction, slow, and fast pyrolysis on the single particle combustion of agricultural biomass and lignite coal at high heating rates. Fuel 308:122054. doi:10.1016/j.fuel.2021.122054.
  • Hong, D. K., T. Si, X. X. Li, and X. Guo. 2020. Reactive molecular dynamic simulations of the CO2 gasification effect on the oxy-fuel combustion of Zhundong coal char. Fuel Processing Technology 199. doi:10.1016/j.fuproc.2019.106305.
  • Huang, X., X. Jiang, X. Han, and H. Wang. 2008. Combustion characteristics of fine- and micro-pulverized coal in the mixture of O2/CO2. Energy & Fuels 22 (6):3756–62. doi:10.1021/ef800444c.
  • Jankovic, B., N. Manic, D. Stojiljkovic, and V. Jovanovic. 2020. The assessment of spontaneous ignition potential of coals using TGA-DTG technique. Combustion and Flame 211:32–43. doi:10.1016/j.combustflame.2019.09.020.
  • Khandal, S., S. B. Gadwal, V. A. Raikar, T. Yunus Khan, and I. A. Badruddin. 2021. An experimental-based artificial neural network performance study of common rail direct injection engine run on plastic pyrolysis oil. International Journal of Sustainable Engineering 14:137–46. doi:10.1080/19397038.2020.1773568.
  • Kuenzer, C., and G. B. Stracher. 2012. Geomorphology of coal seam fires. Geomorphology 138:209–22. doi:10.1016/j.geomorph.2011.09.004.
  • Kuenzer, C., J. Zhang, Y. Sun, Y. Jia, and S. Dech (2012) Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities. International Journal of Coal Geology 102:75–86. doi:10.1016/j.coal.2012.07.006.
  • Liew, J. X., A. C. M. Loy, B. L. F. Chin, A. AlNouss, M. Shahbaz, T. Al-Ansari, R. Govindan, and Y. H. Chai. 2021. Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renewable Energy 170:948–63. doi:10.1016/j.renene.2021.02.053.
  • Liu, Y., P. Fu, K. Bie, Y. Gong, and T. Xu. 2020. The intrinsic reactivity of coal char conversion compared under different conditions of O2/CO2, O2/H2O and air atmospheres. Journal of the Energy Institute 93:1883–91. doi:10.1016/j.joei.2020.04.003.
  • Liu, L., and F. B. Zhou. 2010. A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. International Journal of Coal Geology 82 (1–2):27–36. doi:10.1016/j.coal.2010.01.014.
  • Lu, H., J. Deng, D. Li, F. Xu, Y. Xiao, and C. Shu. 2021. Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process. Energy 227:120431. doi:10.1016/j.energy.2021.120431.
  • Magalhaes, D., F. Kazanç, A. Ferreira, M. Rabacal, and M. Costa. 2017. Ignition behavior of Turkish biomass and lignite fuels at low and high heating rates. Fuel 207:154–64. doi:10.1016/j.fuel.2017.06.069.
  • Manwatkar, P., L. Dhote, R. A. Pandey, A. Middey, and S. Kumar. 2021. Combustion of distillery sludge mixed with coal in a drop tube furnace and emission characteristics. Energy 221:119871. doi:10.1016/j.energy.2021.119871.
  • Miao, M., B. Y. Deng, H. Kong, H. R. Yang, J. F. Lyu, X. G. Jiang, and M. Zhang (2021) Effects of volatile matter and oxygen concentration on combustion characteristics of coal in an oxygen-enriched fluidized bed. Energy 220. doi:10.1016/j.energy.2021.119778.
  • Naqvi, S. R., Z. Hameed, R. Tariq, S. A. Taqvi, I. Ali, M. B. K. Niazi, T. Noor, A. Hussain, N. Iqbal, and M. Shahbaz. 2019. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Management 85:131–40. doi:10.1016/j.wasman.2018.12.031.
  • Naqvi, S. R., R. Tariq, Z. Hameed, I. Ali, S. A. Taqvi, M. Naqvi, M. B. K. Niazi, T. Noor, and W. Farooq. 2018. Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel 233:529–38. doi:10.1016/j.fuel.2018.06.089.
  • Ni, Z. S., H. B. Bi, C. L. Jiang, H. Sun, W. L. Zhou, Z. C. Qiu, L. Q. He, and Q. Z. Lin. 2022. Influence of biomass on coal slime combustion characteristics based on TG-FTIR, principal component analysis, and artificial neural network. The Science of the Total Environment 843. doi:10.1016/j.scitotenv.2022.156983.
  • Rathnam, R. K., L. K. Elliott, T. F. Wall, Y. Liu, and B. Moghtaderi. 2009. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Processing Technology 90 (6):797–802. doi:10.1016/j.fuproc.2009.02.009.
  • Su, H., N. Kang, B. Shi, H. Ji, Y. Li, and J. Shi. 2021. Simultaneous thermal analysis on the dynamical oxygen-lean combustion behaviors of coal in a O-2/N-2/CO2 atmosphere. Journal of the Energy Institute 96:128–39. doi:10.1016/j.joei.2021.03.003.
  • Sunphorka, S., B. Chalermsinsuwan, and P. Piumsomboon. 2017. Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. Fuel 193:142–58. doi:10.1016/j.fuel.2016.12.046.
  • Su, H., F. Zhou, J. Li, and H. Qi. 2017. Effects of oxygen supply on low-temperature oxidation of coal: A case study of Jurassic coal in Yima, China. Fuel 202:446–54. doi:10.1016/j.fuel.2017.04.055.
  • Su, H. -T., F. -B. Zhou, B. -B. Shi, H. -N. Qi, and J. -C. Deng. 2020. Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review. International Journal of Minerals, Metallurgy and Materials 27:275–91. doi:10.1007/s12613-019-1947-x.
  • Tang, Y., and H. Wang. 2019. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite. Process Safety and Environmental Protection 124:143–50. doi:10.1016/j.psep.2019.01.031.
  • Wang, Y. L., Y. S. Wang, S. Y. Song, T. Wang, D. Li, and H. Z. Tan. 2020. Effects of coal types and combustion conditions on carbonaceous aerosols in flue gas and their light absorption properties. Fuel 277. doi:10.1016/j.fuel.2020.118148.
  • Xiao, Y., J. -W. Liu, J. -F. Zeng, X. Lu, Y. Tian, and C. -M. Shu. 2022. Coupling effect of operational factors on heat extraction from a coal pile using a two-phase closed thermosyphon. Energy 239:122371. doi:10.1016/j.energy.2021.122371.
  • Xiao, Y., J. W. Liu, J. F. Zeng, X. Lu, Y. Tian, and C. M. Shu. 2022. Coupling effect of operational factors on heat extraction from a coal pile using a two-phase closed thermosyphon. Energy 239:239. doi:10.1016/j.energy.2021.122371.
  • Xie, C., J. Liu, X. Zhang, W. Xie, J. Sun, K. Chang, J. Kuo, W. Xie, C. Liu, and S. Sun. 2018. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks. Applied Energy 212:786–95. doi:10.1016/j.apenergy.2017.12.084.
  • Yildiz, Z., H. Uzun, S. Ceylan, and Y. Topcu. 2016. Application of artificial neural networks to co-combustion of hazelnut husk-lignite coal blends. Bioresource Technology 200:42–47. doi:10.1016/j.biortech.2015.09.114.
  • Yongju, O., and Y. S. Zhang. 2022. Combustion characteristics and kinetics of DPR Korea’s anthracite in O2/N2 and O2/CO2 atmosphere. Journal of Thermal Analysis and Calorimetry 147 (22):12897–905. doi:10.1007/s10973-022-11464-8.
  • Zhang, Z. Q., H. Q. Duan, Y. J. Zhang, X. J. Guo, X. Yu, X. G. Zhang, M. M. Rahman, and J. M. Cai. 2020. Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses. Energy 207. doi:10.1016/j.energy.2020.118290.
  • Zhang, Y., Y. Liu, X. Shi, C. Yang, W. Wang, and Y. Li. 2018. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 233:68–76. doi:10.1016/j.fuel.2018.06.052.
  • Zhao, J. Q., D. G. Yang, J. X. Wu, X. L. Meng, X. Li, G. G. Wu, Z. Y. Miao, R. Z. Chu, and S. Yu. 2021. Prediction of temperature and CO concentration fields based on BPNN in low-temperature coal oxidation. Thermochimica acta 695. doi:10.1016/j.tca.2020.178820.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.