96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effective recovery of bitumen from Jordanian tar sand using several extraction methods

ORCID Icon, , , , &
Pages 665-682 | Received 17 Apr 2023, Accepted 10 May 2023, Published online: 18 May 2023

References

  • Abramov, O. V., V. O. Abramov, S. K. Myasnikov, and M. S. Mullakaev. 2009a. Extraction of bitumen, crude oil and its products from tar sand and contaminated sandy soil under effect of ultrasound. Ultrasonics Sonochemistry 16:408–16. doi:10.1016/j.ultsonch.2008.10.002.
  • Abramov, O. V., V. O. Abramov, S. K. Myasnikov, and M. S. Mullakaev. 2009b. Ultrasonic technologies for extracting oil products from oil-bearing sands and contaminated soils. Theoretical Foundations of Chemical Engineering 43:504–10. doi:10.1134/S0040579509040265.
  • Al-Ayed, O. S., M. W. Amer, and M. Matouq. 2017. Variable activation energy principle to model oil shale pyrolysis kinetics. Oil Shale 34:181–94. doi:10.3176/oil.2017.2.07.
  • Alhesan, J. S. A., M. W. Amer, M. Marshall, W. R. Jackson, Y. Fei, M. L. Gorbaty, P. J. Cassidy, and A. L. Chaffee. 2021. A comparison of the thermal conversion behaviour of marine kerogens isolated from oil shales by NaOH-HCl and HCl-HF methods. Journal of Analytical and Applied Pyrolysis 155:105023. doi:10.1016/j.jaap.2021.105023.
  • Aljariri Alhesan, J. S., M. W. Amer, M. Marshall, W. R. Jackson, T. Gengenbach, Y. Qi, M. L. Gorbaty, P. J. Cassidy, and A. L. Chaffee. 2019. A comparison of the NaOH-HCl and HCl-HF methods of extracting kerogen from two different marine oil shales. Fuel 236:880–89. doi:10.1016/j.fuel.2018.09.058.
  • Al-Otoom, A., M. Al-Harahsheh, M. Allawzi, S. Kingman, J. Robinson, A. Al-Harahsheh, and A. Saeid. 2013. Physical and thermal properties of Jordanian tar sand. Fuel Processing Technology 106:174–80. doi:10.1016/j.fuproc.2012.07.021.
  • Amer, M. W., 2013. Extraction of Oil from Oil Shale by New, More Environmentally Acceptable Methods ( PhD Thesis), Monash University, Australia
  • Amer, M. W., J. S. A. Alhesan, T. Gengenbach, M. Marshall, Y. Fei, W. R. Jackson, and A. L. Chaffee. 2020. Structural characteristics of low-aromaticity marine and lacustrine oil shales and their NaOH-HCl kerogens determined using 13C NMR and XPS. Australian Journal of Chemistry 73:1237–49. doi:10.1071/CH20168.
  • Amer, M. W., J. S. A. Alhesan, M. Marshall, O. S. Al-Ayed, and A. M. Awwad. 2019. Low temperature retorting of Jordanian oil shales using semi-continuous apparatus. Journal of Analytical and Applied Pyrolysis 142:104639. doi:10.1016/j.jaap.2019.104639.
  • Amer, M. W., J. S. A. Alhesan, M. Marshall, Y. Fei, W. R. Jackson, and A. L. Chaffee. 2022. Energy efficient method of supercritical extraction of oil from oil shale. Energy Conversion & Management 252:115108. doi:10.1016/j.enconman.2021.115108.
  • Amer, M. W., J. S. Aljariri Alhesan, and A. B. Ghassan. 2022. Ultrasonic extraction of oil shale bitumen and study of its structural features using GC-MS and NMR techniques. International Journal of Coal Preparation & Utilization 1–18. 10.1080/19392699.2022.2119560
  • Amer, M. W., J. S. Aljariri Alhesan, S. Ibrahim, G. Qussay, M. Marshall, and O. S. Al-Ayed. 2021. Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study). Energy 214:118863. doi:10.1016/j.energy.2020.118863.
  • Amer, M. W., J. S. Aljariri Alhesan, M. Marshall, A. M. Awwad, and O. S. Al-Ayed. 2019. Characterization of Jordanian oil shale and variation in oil properties with pyrolysis temperature. Journal of Analytical and Applied Pyrolysis 140:219–26. doi:10.1016/j.jaap.2019.03.019.
  • Amer, M. W., J. S. Aljariri Alhesan, M. Marshall, Y. Fei, W. Roy Jackson, and A. L. Chaffee. 2023. Comparison between reaction products obtained from the pyrolysis of marine and lacustrine kerogens. Fuel 337:126839. doi:10.1016/j.fuel.2022.126839.
  • Amer, M. W., A. L. Chaffee, Y. Fei, M. Marshall, and W. R. Jackson. 2012. Reactivity comparisons of Jordanian, Colorado and Australian oil shales. Preparation American Chemical Society, Division Energy Fuels 57:32–33.
  • Amer, M. W., Y. Fei, M. Marshall, W. R. Jackson, M. Gorbaty, and A. L. Chaffee. 2015. Recovery of shale oil condensate from different oil shales using a flow-through apparatus. Fuel Processing Technology 133:167–72. doi:10.1016/j.fuproc.2015.01.009.
  • Amer, M. W., M. Marshall, Y. Fei, W. R. Jackson, M. L. Gorbaty, P. J. Cassidy, and A. L. Chaffee. 2013. Comparison of the yields and structure of fuels derived from freshwater algae (torbanite) and marine algae (El-Lajjun oil shale). Fuel 105:83–89. doi:10.1016/j.fuel.2012.06.064.
  • Amer, M. W., M. Marshall, Y. Fei, W. R. Jackson, M. L. Gorbaty, P. J. Cassidy, and A. L. Chaffee. 2014. A comparison of the structure and reactivity of five Jordanian oil shales from different locations. Fuel 119:313–22. doi:10.1016/j.fuel.2013.11.013.
  • Amer, M. W., M. Marshall, Y. Fei, W. Roy Jackson, M. L. Gorbaty, P. J. Cassidy, and A. L. Chaffee. 2015. The structure and reactivity of a low-sulfur lacustrine oil shale (Colorado U.S.A.) compared with those of a high-sulfur marine oil shale (Julia Creek, Queensland, Australia). Fuel Processing Technology 135:91–98. doi:10.1016/j.fuproc.2014.10.032.
  • Amer, M. W., B. Mitrevski, W. Roy Jackson, A. L. Chaffee, and P. J. Marriott. 2014. Multidimensional and comprehensive two-dimensional gas chromatography of dichloromethane soluble products from a high sulfur Jordanian oil shale. Talanta 120:55–63. doi:10.1016/j.talanta.2013.11.069.
  • Avvaru, B., N. Venkateswaran, P. Uppara, S. B. Iyengar, and S. S. Katti. 2018. Current knowledge and potential applications of cavitation technologies for the petroleum industry. Ultrasonics Sonochemistry 42:493–507. doi:10.1016/j.ultsonch.2017.12.010.
  • Bjorndalen, N., and M. R. Islam. 2004. The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well. Journal of Petroleum Science & Engineering 43:139–50. doi:10.1016/j.petrol.2004.01.006.
  • Bukharin, N., M. E. Hassan, D. Nobes, and M. Omelyanyuk. 2020. Reducing energy consumption during bitumen separation from oil sand. Energy Reports 6:206–13. doi:10.1016/j.egyr.2019.11.064.
  • Calemma, V., P. Iwanski, M. Nali, R. Scotti, and L. Montanari. 1995. Structural characterization of asphaltenes of different origins. Energy & Fuels 9:225–30. doi:10.1021/ef00050a004.
  • Dixon, D. V., S. R. Stoyanov, Y. Xu, H. Zeng, and J. B. P. Soares. 2020. Challenges in developing polymer flocculants to improve bitumen quality in non-aqueous extraction processes: An experimental study. Petroleum Science 17:811–21. doi:10.1007/s12182-019-00414-z.
  • Drelich, J. 2008. Wetting phenomena in oil sand systems and their impact on the water-based bitumen extraction process. Mining, Metallurgy & Exploration 25:1–12. doi:10.1007/BF03403379.
  • Fei, Y., M. Marshall, W. R. Jackson, M. L. Gorbaty, M. W. Amer, P. J. Cassidy, and A. L. Chaffee. 2012. Evaluation of several methods of extraction of oil from a Jordanian oil shale. Fuel 92:281–87. doi:10.1016/j.fuel.2011.08.019.
  • Gbadamosi, M. R., T. A. Afolabi, O. O. Banjoko, A. L. Ogunneye, K. A. Abudu, O. O. Ogunbanjo, and D. O. Jegede. 2018. Spatial distribution and lifetime cancer risk due to naturally occurring radionuclides in soils around tar-sand deposit area of Ogun State, southwest Nigeria. Chemosphere 193:1036–48. doi:10.1016/j.chemosphere.2017.11.132.
  • Hao, J., Y. Che, Y. -Y. Tian, D. Li, J. Zhang, and Y. Qiao. 2017. Study on thermal cracking characteristics and kinetics of oil sand bitumen and its SARA fractions by TG–FTIR. Energy & Fuels 31:1295–309. doi:10.1021/acs.energyfuels.6b02598.
  • Hao, J., W. Feng, Y. Qiao, Y. Tian, J. Zhang, and Y. Che. 2017. Thermal cracking behaviors and products distribution of oil sand bitumen by TG-FTIR and Py-GC/TOF-MS. Energy Conversion & Management 151:227–39. doi:10.1016/j.enconman.2017.08.083.
  • Henderson, J. H., and L. Weber. 1965. Physical upgrading of heavy crude oils by the application of heat. Journal of Canadian Petroleum Technology 4:206–12. doi:10.2118/65-04-05.
  • Khraisha, Y. H. 1999. Study of extraction and pyrolysis of Jordan tar sand. International Journal of Energy Research 23:833–39. https://doi.org/10.1002/SICI1099-114X19990823:10<833:AID-ER519>3.0.CO;2-0
  • Kirpalani, D. M., and D. P. Mohapatra. 2017. Towards the development of cavitation technology for upgrading bitumen: Viscosity change and chemical cavitation yield measurements. Petroleum Science 14:404–11. doi:10.1007/s12182-017-0148-3.
  • Li, S., B. Lu, X. Lin, Y. Zhou, J. Song, and Y. Wang. 2022. The rapid pyrolysis feature and evolution of heteroatoms of Indonesian oil sand. Journal of Analytical and Applied Pyrolysis 165:105537. doi:10.1016/j.jaap.2022.105537.
  • Lin, F., S. R. Stoyanov, and Y. Xu. 2017. Recent advances in nonaqueous extraction of bitumen from mineable oil sands: A review. Organic Process Research & Development 21:492–510. doi:10.1021/acs.oprd.6b00357.
  • Mahdadi, N., S. L. Chihi, H. Bouguettaia, S. Beddiaf, and M. L. D. Mechri. 2016. Chromatic classification of Ouargla (Algeria) Dunes Sand: Determination of main compositions and color causes, by using XRD, FTIR and XRF. Silicon 9:211–21. doi:10.1007/s12633-016-9432-x.
  • Meftah, N., and M. S. Mahboub. 2020. Spectroscopic characterizations of sand dunes minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD Analyses. Silicon 12:147–53. doi:10.1007/s12633-019-00109-5.
  • Minerals, M. o. E. a. 2021. Oil & gas exploration opportunities in Jordan. Jordan.
  • Mitrevski, B., M. W. Amer, A. L. Chaffee, and P. J. Marriott. 2013. Evaluation of comprehensive two-dimensional gas chromatography with flame photometric detection: Potential application for sulfur speciation in shale oil. Analytica chimica acta 803:174–80. doi:10.1016/j.aca.2013.07.021.
  • Mohapatra, D. P., and D. M. Kirpalani. 2016. Bitumen heavy oil upgrading by cavitation processing: Effect on asphaltene separation, rheology, and metal content. Applied Petrochemical Research 6:107–15. doi:10.1007/s13203-016-0146-1.
  • Mousavi, S. M., A. Ramazani, I. Najafi, and S. M. Davachi. 2012. Effect of ultrasonic irradiation on rheological properties of asphaltenic crude oils. Petroleum Science 9:82–88. doi:10.1007/s12182-012-0186-9.
  • Nassar, N. N., A. Hassan, G. Luna, and P. Pereira-Almao. 2013. Comparative study on thermal cracking of Athabasca bitumen. Journal of Thermal Analysis and Calorimetry 114:465–72. doi:10.1007/s10973-013-3024-4.
  • Nikakhtari, H., L. Vagi, P. Choi, Q. Liu, and M. R. Gray. 2013. Solvent screening for non-aqueous extraction of Alberta oil sands. The Canadian Journal of Chemical Engineering 91:1153–60. doi:10.1002/cjce.21751.
  • Ogunsola, O. I., and P. C. Williams. 1988. Particle size effects on compositional analyses of Nigerian Tarsands. Journal of African Earth Sciences (And the Middle East) 7:653–55. doi:10.1016/0899-5362(88)90115-7.
  • Park, Y. C., J. -Y. Paek, D. -H. Bae, and D. Shun. 2009. Study of pyrolysis kinetics of Alberta oil sand by thermogravimetric analysis. The Korean Journal of Chemical Engineering 26:1608–12. doi:10.1007/s11814-009-0277-5.
  • Piotrowska, E., M. Mohamadi, and R. Wan. 2018. Effects of sample disturbance and heterogeneity on the triaxial behaviour of a Canadian oil sand at ambient and high temperatures. Acta Geotechnica 13:457–71. doi:10.1007/s11440-017-0575-8.
  • Qu, X., Y. Li, S. Li, J. Wang, H. Xu, and Z. Li. 2021. Thermal cracking, aquathermolysis, and their upgrading effects of Mackay River oil sand. Journal of Petroleum Science & Engineering 201:108473. doi:10.1016/j.petrol.2021.108473.
  • Santander, C., J. Liu, X. -L. Tan, Q. Liu, and H. -B. Zeng. 2021. High molecular weight guar gum assisted settling of fine solids in diluted bitumen: Effect of solvents. Petroleum Science 18:1877–86. doi:10.1016/j.petsci.2021.09.013.
  • Sazanov, Y. N., and A. V. Gribanov. 2010. Thermochemistry of lignin. Russian Journal of Applied Chemistry 83:175–94. doi:10.1134/s1070427210020011.
  • Selley, R. C., and S. A. Sonnenberg. 2015. Chapter 9 - nonconventional petroleum resources. In Elements of petroleum geology, R. C. Selley and S. A. Sonnenberg ed., Third Edition ed, 1–528. Boston: Academic Press.
  • Shun, D., J. -S. Shin, D. -H. Bae, H. -J. Ryu, and J. Park. 2017. A comparison of fluidized bed pyrolysis of oil sand from Utah, USA, and Alberta, Canada. The Korean Journal of Chemical Engineering 34:3125–31. doi:10.1007/s11814-017-0233-8.
  • Speight, J. G. 2019a. Chapter 1 - heavy oil, extra heavy oil, and Tar Sand Bitumen. In Heavy oil recovery and upgrading, ed. J. G. Speight, 3–48. Houston, Texas: Gulf Professional Publishing.
  • Speight, J. G. 2019b. Chapter 4 - recovery of Tar Sand Bitumen. In Heavy oil recovery and upgrading, ed. J. G. Speight, 1–839. Houston, Texas: Gulf Professional Publishing.
  • Versan Kok, M. 2011. Thermo-oxidative characterization and kinetics of tar sands. Energy 36:5338–42. doi:10.1016/j.energy.2011.06.042.
  • Wang, J., X. Tang, J. Li, E. Guo, W. Guan, and Y. Jiang. 2021. Quartz sand proppant loaded with Ni and Mo for in-situ aquathermolysis of heavy oil. Fuel 306:121653. doi:10.1016/j.fuel.2021.121653.
  • Wang, Q., J. -B. Ye, H. -Y. Yang, and Q. Liu. 2016. Chemical composition and structural characteristics of oil shales and their kerogens using fourier transform infrared (FTIR) spectroscopy and solid-state 13C nuclear magnetic resonance (NMR). Energy & Fuels 30:6271–80. doi:10.1021/acs.energyfuels.6b00770.
  • Yaşar, E. 2015. Obtaining of modified bitumen with optimum quality through mixing of natural bitumen (gilsonite), bitumen and thinner oil. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 1:103–07. doi:10.1007/s40948-015-0013-z.
  • Yuan, J., and M. Elektorowicz. 2021. Factors influencing non-aqueous extraction process of bitumen to mitigate the environmental impacts. Process Safety & Environmental Protection 153:75–83. doi:10.1016/j.psep.2021.07.016.
  • Yusupova, T. N., Y. M. Ganeeva, G. V. Romanov, E. E. Barskaya, V. I. Morozov, E. S. Okhotnikova, and A. V. Vakhin. 2017. Change in the structural-group composition of bitumen asphaltenes upon thermal bitumen recovery. Petroleum Chemistry 57:198–202. doi:10.1134/S0965544117020256.
  • Zhi-Nong, G. 2002. A new type of exposed oil sand mine. Wuhan University Journal of Natural Sciences 7:237–42. doi:10.1007/BF02830326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.