142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

ICP-OES analysis of total As and Cd in Columbian Oryza sativa L. rice

ORCID Icon, , , , , & show all
Pages 16-27 | Received 24 May 2023, Accepted 30 Oct 2023, Published online: 19 Dec 2023

References

  • Akinci G, Duyusen ED. 2011. Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination. 268(1–3):221–226. doi: 10.1016/j.desal.2010.10.032.
  • Amaral C, Fialho L, Camargo F, Pirola C, Joaquim N. 2016. Investigation of analyte losses using microwave-assisted sample digestion and closed vessels with venting. Talanta. 160:354–359. doi: 10.1016/j.talanta.2016.07.041.
  • Batista BL, Souza JM, De Souza SS, Barbosa F Jr. 2011. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J Hazard Mater. 191(1–3):342–348. doi: 10.1016/j.jhazmat.2011.04.087.
  • Bogdan K, Schenk MK. 2008. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol Lett. 42(21):7885–7890. doi: 10.1021/es801194q.
  • Briscoe M. 2019. Determination of heavy metals in Food by inductively coupled plasma–mass spectrometry: first action 2015.01. J AOAC Int. 98(4):1113–1120. 1 July 2015. doi; 10.5740/jaoac.int.2015.01.
  • Calao CR, Marrugo JL. 2015. Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia. Biomédica. 35(2). doi: 10.7705/biomedica.v35i0.2392.
  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA. 2010. Grain unloading of arsenic species in rice. Plant Physiol. 152(1):309–319. doi: 10.1104/pp.109.146126.
  • Cerveira C, Pozebon D, de Moraes D, Silva de Fraga JC. 2013. Speciation of inorganic arsenic in rice using hydride generation atomic absorption spectrometry (HG-AAS). Anal. Method. 7(11):4528–4534.
  • Chaali N, Bravo D, Ouazaa S, Jaramillo-Barrios CI, Beltrán-Medina JI, Serralde-Ordoñez DP, Benavides-Erazo J. 2022. New insights into arsenic and cadmium distribution and origin in paddy soils using electrical resistivity tomography. J Appl Geophys. 202:104638. doi: 10.1016/j.jappgeo.2022.104638.
  • Chen JY, Zeng JY, Ding S, Li J, Liu X, Guan DX, Ma LQ. 2022. Arsenic contents, speciation and bioaccessibility in rice grains from China: regional and variety differences. J Hazard Mater. 437:129431. doi: 10.1016/j.jhazmat.2022.129431.
  • Cimetiere N, Soutrel I, Lemasle M, Laplanche A, Crocq A 2013. Standard addition method for the determination of pharmaceutical residues in drinking water by SPE-LCMS/MS. Environmental Technology, Taylor & Francis: STM, Behavioural Science and Public Health Titles. doi: 10.1080/09593330.2013.800563.
  • Codex Alimentarious Commission. 2014. CL 2014/11-CF, report of the eighth session of the codex committee on contaminants in foods the Hague, The Netherlands 31 March – 4 April 2014.
  • European Commision. 2011. Commission Regulation (EU) No 836/2011 of 19 August 2011, amending Regulation (EC) No 333/2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs, Official Journal of the European Union, L 215/9-16.
  • European Commission. 2017. Regulation (EU) 2017/625 of the European Parliament and of the council of 15 March 2017.
  • Giuffré L, Ratto S, Marbán L, Schonwald J, Romaniuk R. 2005. Riesgo por metales pesados en horticultura urbana. Ciencia del suelo. 23(1):101–106.
  • Guo J, Zhang X, Ye D, Huang H, Wang Y, Zheng Z, Li T, Yu H. 2020. Crucial roles of cadmium retention in nodeII for restraining cadmium transport from straw to ear at reproductive period in a grain low-cadmium rice line (Oryza sativa L.). Ecotox Environ Safe. 205:111323. doi: 10.1016/j.ecoenv.2020.111323.
  • Hensawang S, Chanpiwat P. 2017. Health impact assessment of arsenic and cadmium intake via rice consumption in Bangkok, Thailand. Environ Monit Assess. 189(11):599. doi: 10.1007/s10661-017-6321-8.
  • Hensawang S, Chanpiwat P. 2022. Probabilistic estimation and statuses of total, bioaccessible and inorganic arsenic accumulation in commercial white and brown rice in Thailand. Food Addit Contam. 15(3):191–202. doi: 10.1080/19393210.2022.2074146.
  • Herrero Fernández Z, Estevez Alvarez JR, Montero Álvarez A, Muniz Ugarte O, Pupo Gonzalez I, Rodriguez Gonzalez M, Dos Santos Junior JA, Bezerra MB, Dos Santos Junior OP. 2021. Metal contaminants in rice from Cuba analyzed by ICP-MS, ICP-AES and CVAAS. Food Addit Contam. 14(1):59–65. doi: 10.1080/19393210.2020.1870576.
  • Huang L, Li WC, Tam NFY, Ye Z. 2019. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J Environ Sci. 75:296–306. doi: 10.1016/j.jes.2018.04.005.
  • Hussain B, Lin Q, Hamid Y, Sanaullah M, Di L, Khan MB, He Z, Yang X. 2020. Rice stem application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci Total Environ. 712:136497. doi: 10.1016/j.scitotenv.2020.136497.
  • Irem S, Islam E, Maathuis FJ, Niazi NK, Li T. 2019. Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes: effect of soil amendments. Chemosphere. 225:104–114. doi: 10.1016/j.chemosphere.2019.02.202.
  • Islam S, Rahman MM, Islam MR, Naidu R. 2017. Effect of irrigation and genotypes towards reduction in arsenic load in rice. Sci Total Environ. 609:311–318. doi: 10.1016/j.scitotenv.2017.07.111.
  • IUPAC. 1997. Compendium in chemical terminology, version 2014. Oxford: Blackwell Scientific Publications.
  • Kalita J, Pradhan AK, Shandilya ZM, Tanti B. 2018. Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Sci. 25(5):235–249. doi: 10.1016/j.rsci.2018.06.007.
  • Khan MI, Ahmad MF, Ahmad I, Ashfaq F, Wahab S, Alsayegh AA, Kumar S, Hakeem KR. 2022. Arsenic Exposure through dietary intake and associated Health Hazards in the Middle East. Nutrients. 14(10):2136. doi: 10.3390/nu14102136.
  • Kukusamude C, Sricharoen P, Limchoowong N, Kongsri S. 2021. Heavy metals and probabilistic risk assessment via rice consumption in Thailand. Food Chem. 334:127402. doi: 10.1016/j.foodchem.2020.127402.
  • Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH, Wong MH. 2017. Cadmium in rice: transport mechanisms, influencing factors and minimizing measures. Environ Pollut. 224:622–630. doi: 10.1016/j.envpol.2017.01.087.
  • Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong MH. 2005. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric. 85(1):147–153. doi: 10.1002/jsfa.1973.
  • Mahecha Pulido JD, Trujillo-González JM, Torres-Mora MA. 2015. Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta. Orinoquía Universidad los Llanos. 19(1):118–122. doi: 10.22579/20112629.345.
  • Majumder S, Banik P. 2019. Geographical variation of arsenic distribution in paddy soil, rice and rice-based products: a meta-analytic approach and implications to human health. J Environ Manage. 233:184–199. doi: 10.1016/j.jenvman.2018.12.034.
  • Marroquín J. 2015. Validación del método analítico para la determinación de plomo en sangre por espectrofotometría de absorción atómica con horno de grafito en el laboratorio del Departamento de Toxicología de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala [ Tesis de licenciatura]. Guatemala: Universidad de San Carlos de Guatemala.
  • Ma L, Wang L, Jia Y, Yang Z. 2016. Arsenic speciation in locally grown rice grains from Hunan Province, China: spatial distribution and potential health risk. Sci Total Environ. 557:438–444. doi: 10.1016/j.scitotenv.2016.03.051.
  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Cambell RC, Sun G, Zhu YG, Feldmann J, Raab A. 2009. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol. 43(5):1612–1617. doi: 10.1021/es802612a.
  • Mitra A, Chatterjee S, Moogouei R, Gupta DK. 2017. Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy. 7(4):67. doi: 10.3390/agronomy7040067.
  • Monika J, Dressler RA, Wehmeier S, Feldmann J. 2023. Arsenic, cadmium and lead in rice and rice products on the Austrian market. Food Addit Contam. 16(2):185–195. doi: 10.1080/19393210.2023.2194061.
  • Moore KL, Chen Y, van de Meene AM, Hughes L, Liu W, Geraki T, Mosselmans F, McGrath SP, Grovenor C, Zhao FJ. 2014. Combined NanoSIMS and synchrotron X‐ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytologist. 201(1):104–115. doi: 10.1111/nph.12497.
  • Naito S, Matsumoto E, Shindoh K, Nishimura T. 2015. Effects of polishing, cooking and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan. Food Chem. 168:294–301. doi: 10.1016/j.foodchem.2014.07.060.
  • Narukawa T, Matsumoto E, Nishimura T, Hioki A. 2014. Determination of sixteen elements and arsenic species in brown, polished and milled rice. Anal Sci. 30(2):245–250. doi:10.2116/analsci.30.245. PMID: 24521911.
  • Naseri K, Salmani F, Zeinali M, Zeinali T. 2020. Health risk assessment of Cd, Cr, Cu, Ni and Pb in the muscle, liver and gizzard of hen’s marketed in East of Iran. Toxicol Rep. 8:53–59. doi: 10.1016/j.toxrep.2020.12.012.
  • Nookabkaew S, Rangkadilok N, Mahidol C, Promsuk G, Satayavivad J. 2013. Determination of arsenic species in rice from Thailand and other Asian countries using simple extraction and HPLC-ICP-MS. J Agric Food Chem. 61:6991–6998. doi: 10.1021/jf4014873.
  • Oliveira A, Baccan N, Cadore S. 2012. Evaluation of metal ions in rice samples: extraction and direct determination by ICP OES. J Braz Chem Soc. 23(5):838–845. doi: 10.1590/S0103-50532012000500008.
  • Pedron T, Segura FR, Pollo F, Moura Souza F, Coelho dos Santos M, Martins de Magalhães A, Lemos Batista B. 2019. Mitigation of arsenic in rice grains by polishing and washing: evidencing the benefit and the cost. J Cereal Sci. 87:52–58. doi: 10.1016/j.jcs.2019.03.003.
  • Perera MAKKP. 2018. Determination of arsenic and cadmium in Sri Lankan rice samples by inductively coupled plasma mass spectrometry (ICP-MS) following microwave assisted acid digestion. CPQ Nutr. 1(6):01–17.
  • Rahman MA, Rahman MM, Reichman SM, Lim RP, Naidu R. 2014. Arsenic speciation in Australian-grown and imported rice on sale in Australia: implications for human health risk. J Agr Food Chem. 62(25):6016–6024. doi: 10.1021/jf501077w.
  • Ramadan MA, Al-Ashkar EA. 2007. The effect of different fertilizers on the heavy metals in soil and tomato plant.
  • Ramirez R, Subero N, Sequera O, Parra J. 2015. Contenido de Cd en arroz (Oryza sativa L.) y en suelos fertilizados con fosfatos por un periodo entre 5 y 51 años. Rev. Fac. Agron. 41(1):43–48. http://saber.ucv.ve/ojs/index.php/rev_agro/article/view/10837.
  • Reilly C. 2002. Metal contamination of food: its significance for food quality and human health. 3rd ed. Wiley. doi: 10.1002/9780470995105.
  • Reyes YC, Vergara I, Torres OE, Díaz-Lagos M, González EE. 2016. Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Revista Ingeniería Investigación y Desarrollo. 16(2):66–77. doi: 10.19053/1900771X.v16.n2.2016.5447.
  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Ok YS. 2016. Cadmium stress in rice: toxic effects, tolerance mechanisms and management: a critical review. Environ Sci Pollut R. 23(18):17859–17879. doi: 10.1007/s11356-016-6436-4.
  • Rodushkin I, Ruthb T, Huhtasaari AE. 1999. Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Anal Chim Acta. 378:191–200. doi: 10.1016/S0003-2670(98)00635-7.
  • Segura F, Souza J, Paula E, Martins J, Airton, Paulelli A, Barbosa F, Batista B. 2016. Arsenic speciation in Brazilian rice grains organically and traditionally cultivated: Is there any difference in arsenic content. Food Res Int. 89. doi: 10.1016/j.foodres.2016.07.011.
  • Shi Z, Carey M, Meharg C, Williams PN, Signes-Pastor AJ, Triwardhani EA, Pandiangan FI, Campbell K, Elliott C, Marwa EM. 2020. Rice grain cadmium concentrations in the global supply-chain. Exposure Health. 12:869–876. doi: 10.1007/s12403-020-00349-6.
  • Shikawa S, Arao T, Makino T. 2019. Agronomic strategies for reducing arsenic risk in rice. In: Yamauchi H, Sun G, editors. Arsenic contamination in Asia. Singapore: Springer; p. 181–198. doi: 10.1007/978-981-13-2565-6_11.
  • Shrivastava A, Barla A, Majumdar A, Singh S, Bose S. 2019. Arsenic mitigation in rice grain loading via alternative irrigation by proposed water management practices. Chemosphere. 238:124988. doi: 10.1016/j.chemosphere.2019.124988.
  • Signes-Pastor AJ, Carey M, Carbonell-Barrachina AA, Moreno-Jiménez E, Green AJ, Meharg AA. 2016. Geographical variation in inorganic arsenic in paddy field samples and commercial rice from the Iberian Peninsula. Food Chem. 202:356–363. doi: 10.1016/j.foodchem.2016.01.117.
  • Smirnova SV, Ilin DV, Pletnev IV. 2021. Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector. Talanta. 221:121485. doi: 10.1016/j.talanta.2020.121485.
  • Song WE, Chen SB, Liu JF, Li CHEN, Song NN, Ning LI, Bin LIU. 2015. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integr Agr. 14(9):1845–1854. doi: 10.1016/S2095-3119(14)60926-6.
  • Soylak M, Tuzen M, Narin I, Sari H. 2004. Comparison of microwave, dry andwet digestion procedures for determination of trace metal contents in spice samples produced in Turkey. J Food Drug Anal. 3:254–258.
  • Suriyagoda LD, Dittert K, Lambers H. 2018. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agr Ecosyst Environ. 253:23–37. doi: 10.1016/j.agee.2017.10.017.
  • Tadakatsu Y, Gosho T, Kato M, Goto S, Hayashi H. 2010. Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.) grown in continuously flooded Cd-contaminated soil. Soil Sci Plant Nutr. 56:445–453. doi: 10.1111/j.1747-0765.2010.00481.x.
  • Tattibayeva D, Nebot C, Miranda JM, Cepeda A, Mateyev E, Erkebaev M, Franco CM. 2016. A study on toxic and essential elements in rice from the Republic of Kazakhstan: comparing the level of contamination in rice from the European community. Environ Geochem Health. 38(1):85–98. doi: 10.1007/s10653-015-9687-y.
  • Tenni D, Martin M, Barberis E, Beone GM, Miniotti E, Sodano M, Zanzo E, Fontanella MC, Romani M. 2017. Total as and as speciation in Italian rice as related to producing areas and paddy soils properties. J Agr Food Chem. 65(17):3443–3452. doi: 10.1021/acs.jafc.7b00694.
  • Thiex N, Novotny L, Crawford A. 2012. Determination of ash in animal feed: AOAC official method 942.05 revisited. J AOAC Int. 95(5):1392–1397. doi:10.5740/jaoacint.12-129
  • Tüzen M. 2003. Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chem. 80(1):119–123. doi: 10.1016/S0308-8146(02)00264-9.
  • Uddin MM, Zakeel MCM, Zavahir JS, Marikar FMMT, Jahan I. 2021. Heavy metal accumulation in rice and aquatic plants used as human food: a general review. Toxics. 9(12):360. doi: 10.3390/toxics9120360.
  • Verola Mataveli LR, Buzzo ML, de Arauz LJ, de Fátima Henriques Carvalho M, Kumagai Arakaki EE, Matsuzaki R, Tiglea P. 2016. Total arsenic, cadmium, and lead determination in Brazilian rice samples using ICP-MS. J Anal Methods Chem. 2016:Article ID 3968786, 9. doi: 10.1155/2016/3968786.
  • Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH. 2011. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ Pollut. 159(6):1730–1736. doi: 10.1016/j.envpol.2011.02.025.
  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y. 2007. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity and community composition near a copper smelter. Ecotoxicol Environ Saf. 67(1):75–81. doi: 10.1016/j.ecoenv.2006.03.007.
  • Wei YH, Zhang JY, Luo LG, Tu TH. 2014. Simultaneous determination of Se, trace elements and major elements in Se-rich rice by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) after microwave digestion. Food Chem. 159:507–511. doi: 10.1016/j.foodchem.2014.03.057.
  • Wu Q, Hu W, Wang H, Liu P, Wang X, Huang B. 2021. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Sci Total Environ. 780:146557. doi: 10.1016/j.scitotenv.2021.146557.
  • Xiang M, Ma J, Cheng J, Lei K, Li F, Shi Z, Li Y. 2022. Collaborative evaluation of heavy metal pollution of soil-crop system in the Southeast of Yangtze River Delta, China. Ecol Indic. 143:109412. doi: 10.1016/j.ecolind.2022.109412.
  • Xu M, Yang L, Chen Y, Jing H, Wu P, Yang W. 2022. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. Ecotox Environ Safe. 247:114244. doi: 10.1016/j.ecoenv.2022.114244.
  • Yacomelo M, Hernandez, Zapata R 2014. Riesgo toxicológico en personas expuestas, a suelos y vegetales, con posibles concentraciones de metales pesados, en el sur del Atlántico, Colombia. Universidad Nacional de Colombia.
  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ. 642:690–700. doi: 10.1016/j.scitotenv.2018.06.068.
  • Zavala YJ, Gerads R, Gürleyük H, Duxbury JM. 2008. Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environ Sci Technol Lett. 42(10):3861–3866. doi: 10.1021/es702748q.
  • Zhang S, Geng L, Fan L, Zhang M, Zhao Q, Xue P, Liu W. 2020. Spraying siliconto decrease inorganic arsenic accumulation in rice grain from arsenic-contaminated paddy soil. Sci Total Environ. 704:135239. doi: 10.1016/j.scitotenv.2019.135239.
  • Zhao FJ, Stroud JL, Khan MA, McGrath SP. 2012. Arsenic translocation in rice investigated using radioactive 73 as tracer. Plant Soil. 350(1–2):413–420. doi: 10.1007/s11104-011-0926-4.
  • Zhou H, Zhu W, Yang WT, Gu JF, Gao ZX, Du WQ, Zhang P, Peng PQ, Liao BH. 2018. Cadmium uptake, accumulation and remobilization in iron plaque and rice tissues at different growth stages. Ecotoxicol Environ Saf. 152:91–97. doi: 10.1016/j.ecoenv.2018.01.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.