84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Occurence of antimicrobial residues in milk and labneh consumed in Lebanon

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 87-99 | Received 14 Sep 2023, Accepted 19 Dec 2023, Published online: 18 Jan 2024

References

  • Arena M, Caggianiello G, Russo P, Albenzio M, Fiocco D, Capozzi V, Spano G. 2015. Functional starters for functional yogurt. Foods. 4(4):15–33. doi: 10.3390/foods4010015.
  • Barkema HW, Schukken YH, Zadoks RN. 2006. Invited review: the role of cow, pathogen, and treatment regimen in the therapeutic success of bovine staphylococcus aureus mastitis. J Dairy Sci. 89(6):1877–1895. doi: 10.3168/jds.S0022-0302(06)72256-1.
  • Beltrán MC, Berruga MI, Molina A, Althaus RL, Molina MP. 2015. Performance of current microbial tests for screening antibiotics in sheep and goat milk. Int Dairy J. 41:13–15. doi: 10.1016/j.idairyj.2014.09.007.
  • Beltrán MC, Sanna A, Quintanilla P, Montes R, Molina MP. 2023. Quinolones in goats’ milk: effect on the cheese-making process, chemical and microbial characteristics of acid-coagulated cheeses. Int Dairy J. 138:105538. doi: 10.1016/j.idairyj.2022.105538.
  • Berruga MI, Molina A, Althaus RL, Molina MP. 2016. Control and prevention of antibiotic residues and contaminants in sheep and goat’s milk. Small Rumin Res. 142:38–43. doi: 10.1016/j.smallrumres.2016.02.023.
  • Bogialli S, Di Corcia A, Laganà A, Mastrantoni V, Sergi M. 2007. A simple and rapid confirmatory assay for analyzing antibiotic residues of the macrolide class and lincomycin in bovine milk and yoghurt: hot water extraction followed by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 21(2):237–246. doi: 10.1002/rcm.2835.
  • Chen S, Zhang W, Li J, Yuan M, Zhang J, Xu F, Xu H, Zheng X, Wang L. 2020. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum). Environ Pollut. 263:114554. doi: 10.1016/j.envpol.2020.114554.
  • Cheng WN, Han SG. 2020. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - a review. Asian Australas J Anim Sci. 33(11):1699–1713. doi: 10.5713/ajas.20.0156.
  • Chiesa LM, DeCastelli L, Nobile M, Martucci F, Mosconi G, Fontana M, Castrica M, Arioli F, Panseri S. 2020. Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. LWT. 131:109783. doi: 10.1016/j.lwt.2020.109783.
  • Comunian R, Paba A, Dupré I, Daga ES, Scintu MF. 2010. Evaluation of a microbiological indicator test for antibiotic detection in ewe and goat milk. J Dairy Sci. 93(12):5644–5650. doi: 10.3168/jds.2010-3474.
  • Daeseleire E, Van Pamel E, Van Poucke C, Croubels S. 2017. Chapter 6 - veterinary drug residues in foods. In: Schrenk D, Cartus A, editors. 2nd ed. Cambridge (UK) Woodhead Publishing; p. 117–153.
  • Dankar I, Hassan H, Serhan M. 2022. Knowledge, attitudes, and perceptions of dairy farmers regarding antibiotic use: lessons from a developing country. J Dairy Sci. 105(2):1519–1532. doi: 10.3168/jds.2021-20951.
  • Dasenaki ME, Bletsou AA, Koulis GA, Thomaidis NS. 2015. Qualitative multiresidue screening method for 143 Veterinary Drugs and Pharmaceuticals in milk and fish tissue using liquid chromatography quadrupole-time-of-flight Mass spectrometry. J Agric Food Chem. 63(18):4493–4508. doi: 10.1021/acs.jafc.5b00962.
  • Dorival-García N, Junza A, Zafra-Gómez A, Barrón D, Navalón A. 2016. Simultaneous determination of quinolone and β-lactam residues in raw cow milk samples using ultrasound-assisted extraction and dispersive-SPE prior to UHPLC−MS/MS analysis. Food Control. 60:382–393. doi: 10.1016/j.foodcont.2015.08.008.
  • Dubreil E, Gautier S, Fourmond M-P, Bessiral M, Gaugain M, Verdon E, Pessel D. 2017. Validation approach for a fast and simple targeted screening method for 75 antibiotics in meat and aquaculture products using LC-MS/MS. Food Addit Contam Part A. 34(4):453–468. doi: 10.1080/19440049.2016.1230278.
  • [EC] European Commission. 2009. Commission regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J Eur Union. L 15:1–72.
  • [EC] European Commission. 2021. Commission implementing regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing decisions 2002/657/EC and 98/179/EC. Off J Eur Union. L 180:84–109.
  • [EC] European Commission. 2022a. Commission delegated regulation (EU) 2022/1644 of 7 July 2022 supplementing regulation (EU) 2017/625 of the European parliament and of the council with specific requirements for the performance of official controls on the use of pharmacologically active substances authorised as veterinary medicinal products or as feed additives and of prohibited or unauthorised pharmacologically active substances and residues thereof. Off J Eur Union. L248:3–17.
  • [EC] European Commission. 2022b. Commission implementing regulation (EU) 2022/1646 of 23 September 2022 on uniform practical arrangements for the performance of official controls as regards the use of pharmacologically active substances authorised as veterinary medicinal products or as feed additives and of prohibited or unauthorised pharmacologically active substances and residues thereof, on specific content of multi-annual national control plans and specific arrangements for their preparation. Off J Eur Union. L248:32–45.
  • Freitas A, Barbosa J, Ramos F. 2013. Development and validation of a multi-residue and multiclass ultra-high-pressure liquid chromatography-tandem mass spectrometry screening of antibiotics in milk. Int Dairy J. 33(1):38–43. doi: 10.1016/j.idairyj.2013.05.019.
  • Giraldo J, Althaus RL, Beltrán MC, Molina MP. 2017. Antimicrobial activity in cheese whey as an indicator of antibiotic drug transfer from goat milk. Int Dairy J. 69:40–44. doi: 10.1016/j.idairyj.2017.02.003.
  • Giraldo J, Igualada C, Cabizza R, Althaus R, Beltrán Martínez M. 2022. Transfer of antibiotics from goat’s milk to rennet curd and whey fractions during cheese-making. Food Chem. 392:133218. doi: 10.1016/j.foodchem.2022.133218.
  • Grunwald L, Petz M. 2003. Food processing effects on residues: penicillins in milk and yoghurt. Anal Chim Acta. 483(1):73–79. doi: 10.1016/S0003-2670(02)01405-8.
  • Han M, Gong L, Wang J, Zhang X, Jin Y, Zhao R, Yang C, He L, Feng X, Chen Y. 2019. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk. Sens Actuators B Chem. 292:94–104. doi: 10.1016/j.snb.2019.04.019.
  • Hassan HF, Haddad R, Saidy L, Hosri C, Asmar S, Serhan M. 2021. Tracking of enrofloxacin antibiotic in the making of common middle eastern cheeses. Appl Food Res. 1(1):100004. doi: 10.1016/j.afres.2021.100004.
  • Ismail G, El Hawari K, Jaber F, Verdon E, Al Iskandarani M. 2023. Optimization of a multi-residue screening method for the detection of 71 antimicrobial residues in milk products: the case of labneh. Food Anal Met [Internet]. 16(9–10):1512–1528. doi: 10.1007/s12161-023-02513-5.
  • Jank L, Martins MT, Arsand JB, Campos Motta TM, Hoff RB, Barreto F, Pizzolato TM. 2015. High-throughput method for macrolides and lincosamides antibiotics residues analysis in milk and muscle using a simple liquid-liquid extraction technique and liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-MS/MS). Talanta. 144:686–695. doi: 10.1016/j.talanta.2015.06.078.
  • Ji B, Zhao W, Xu X, Han Y, Jie M, Xu G, Bai Y. 2021. Development of a modified quick, easy, cheap, effective, rugged, and safe method based on melamine sponge for multi-residue analysis of veterinary drugs in milks by ultra-performance liquid chromatography tandem mass spectrometry. J Chromatogr a. 1651:462333. doi: 10.1016/j.chroma.2021.462333.
  • Joubrane K, Jammoul A, Daher R, Ayoub S, El Jed M, Hneino M, El Hawari K, Al Iskandarani M, Daher Z. 2022. Microbiological contamination, antimicrobial residues, and antimicrobial resistance in raw bovine milk in Lebanon. Int Dairy J. 134:105455. doi: 10.1016/j.idairyj.2022.105455.
  • Junza A, Dorival-García N, Zafra-Gómez A, Barrón D, Ballesteros O, Barbosa J, Navalón A. 2014. Multiclass method for the determination of quinolones and β-lactams, in raw cow milk using dispersive liquid–liquid microextraction and ultra high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 1356:10–22. doi: 10.1016/j.chroma.2014.06.034.
  • Kabrite S, Bou Mitri C, El Hayek J, Hassan H, Matar Boumosleh J. 2019. Identification and dietary exposure assessment of tetracycline and penicillin residues in fluid milk, yogurt, and labneh: a cross-sectional study in Lebanon. Vet World. 12(4):527–534. doi: 10.14202/vetworld.2019.527-534.
  • Kassaify Z, Abi Khalil P, Sleiman F. 2013. Quantification of antibiotic residues and determination of antimicrobial resistance profiles of microorganisms isolated from bovine milk in Lebanon. Food Nutr Sci. 4(7):1–9. doi: 10.4236/fns.2013.47A001.
  • Lányi K, Darnay L, László N, Lehel J, Friedrich L, Győri R, Laczay P. 2022. Transfer of certain beta-lactam antibiotics from cow’s milk to fresh cheese and whey. Food Addit Contam Part Chem Anal Control Expo Risk Assess. 39(1):52–60. doi: 10.1080/19440049.2021.1973114.
  • Martins MT, Melo J, Barreto F, Hoff RB, Jank L, Bittencourt MS, Arsand JB, Schapoval EES. 2014. A simple, fast and cheap non-SPE screening method for antibacterial residue analysis in milk and liver using liquid chromatography-tandem mass spectrometry. Talanta. 129:374–383. doi: 10.1016/j.talanta.2014.04.049.
  • Mata L, Sanz D, Razquin P. 2016. Performance of eclipse farm test coupled to e-reader for Antibiotic Residues Detection in raw milk. Food Anal Met. 9(2):519–527. doi: 10.1007/s12161-015-0210-y.
  • Menkem ZE, Ngangom BL, Tamunjoh SSA, Boyom FF. 2019. Antibiotic residues in food animals: public health concern. Acta Ecol Sin. 39(5):411–415. doi: 10.1016/j.chnaes.2018.10.004.
  • Mokh S, El Hawari K, Rahim H, Al Iskandarani M, Jaber F. 2020. Antimicrobial residues survey by LC-MS in food-producing animals in Lebanon. Food Addit Contam Part B. 13(2):121–129. doi: 10.1080/19393210.2020.1739148.
  • Nsabimana C, Jiang B, Kossah R. 2005. Manufacturing, properties and shelf life of labneh: a review. Int J Dairy Technol. 58(3):129–137. doi: 10.1111/j.1471-0307.2005.00205.x.
  • Pereira PC. 2014. Milk nutritional composition and its role in human health. Nutr Burbank Los Angel Cty Calif. 30(6):619–627. doi: 10.1016/j.nut.2013.10.011.
  • Pyörälä S. 2009. Treatment of mastitis during lactation. Ir Vet J. 62(Suppl 4):S40–44. doi: 10.1186/2046-0481-62-S4-S40.
  • Quintanilla P, Beltrán MC, Molina A, Escriche I, Molina MP. 2019. Characteristics of ripened Tronchón cheese from raw goat milk containing legally admissible amounts of antibiotics. J Dairy Sci. 102(4):2941–2953. doi: 10.3168/jds.2018-15532.
  • Quintanilla P, Beltrán MC, Peris B, Rodríguez M, Molina MP. 2018. Antibiotic residues in milk and cheeses after the off-label use of macrolides in dairy goats. Small Rumin Res. 167:55–60. doi: 10.1016/j.smallrumres.2018.08.008.
  • Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. 2018. Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci. 4:237. doi: 10.3389/fvets.2017.00237.
  • Shea KM. 2004. Nontherapeutic use of antimicrobial agents in animal agriculture: implications for pediatrics. Pediatrics. 114(3):862–868. doi: 10.1542/peds.2004-1233.
  • Shi X, Zhang S, Fawcett JP, Zhong D. 2004. Acid catalysed degradation of some spiramycin derivatives found in the antibiotic bitespiramycin. J Pharm Biomed Anal. 36(3):593–600. doi: 10.1016/j.jpba.2004.07.037.
  • Suojala L, Kaartinen L, Pyörälä S. 2013. Treatment for bovine Escherichia coli mastitis - an evidence-based approach. J Vet Pharmacol Ther. 36(6):521–531. doi: 10.1111/jvp.12057.
  • Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW. 2010. The epidemiology of bovine respiratory disease: what is the evidence for predisposing factors? Can Vet J. 51(10):1095–1102.
  • Tekele B. 2015. Veterinary drug residues in food-animal products: its risk factors and potential effects on public health. J Vet Sci Technol. 07(01):1–7. doi: 10.4172/2157-7579.1000285.
  • Van Duijkeren E, Vulto AG, Van Miert AS. 1994. Trimethoprim/Sulfonamide combinations in the horse: a review. J Vet Pharmacol Ther. 17(1):64–73. doi: 10.1111/j.1365-2885.1994.tb00524.x.
  • Virto M, Santamarina-García G, Amores G, Hernández I. 2022. Antibiotics in dairy production: where is the problem? Dairy. 3(3):541–564. doi: 10.3390/dairy3030039.
  • Wang C, Li X, Peng T, Wang Z, Wen K, Jiang H. 2017. Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control. 77:1–7. doi: 10.1016/j.foodcont.2017.01.016.
  • Wang J. 2009. Analysis of macrolide antibiotics, using liquid chromatography-mass spectrometry, in food, biological and environmental matrices. Mass Spectrom Rev. 28(1):50–92. doi: 10.1002/mas.20189.
  • Wang J, Leung D. 2012. The challenges of developing a generic extraction procedure to analyze multi-class veterinary drug residues in milk and honey using ultra-high pressure liquid chromatography quadrupole time-of-flight mass spectrometry. Drug Test Anal. 4(Suppl 1):103–111. doi: 10.1002/dta.1355.
  • Zaheer R, Cook SR, Klima CL, Stanford K, Alexander T, Topp E, Read RR, McAllister TA. 2013. Effect of subtherapeutic vs. therapeutic administration of macrolides on antimicrobial resistance in Mannheimia haemolytica and enterococci isolated from beef cattle. Front Microbiol. 4:133. doi: 10.3389/fmicb.2013.00133.
  • Zhan J, Yu X-J, Zhong Y-Y, Zhang Z-T, Cui X-M, Peng J-F, Feng R, Liu X-T, Zhu Y. 2012. Generic and rapid determination of veterinary drug residues and other contaminants in raw milk by ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 906:48–57. doi: 10.1016/j.jchromb.2012.08.018.
  • Zhao Y, Yang QE, Zhou X, Wang F-H, Muurinen J, Virta MP, Brandt KK, Zhu Y-G. 2021. Antibiotic resistome in the livestock and aquaculture industries: status and solutions. Crit Rev Environ Sci Technol. 51(19):2159–2196. doi: 10.1080/10643389.2020.1777815.
  • Zhou J, Nie W, Chen Y, Yang C, Gong L, Zhang C, Chen Q, He L, Feng X. 2018. Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk. Food Chem. 256:304–310. doi: 10.1016/j.foodchem.2018.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.