3,029
Views
13
CrossRef citations to date
0
Altmetric
Review Article

RNA-based ovarian cancer research from ‘a gene to systems biomedicine’ perspective

, &
Pages 219-238 | Received 03 Feb 2017, Accepted 05 Apr 2017, Published online: 02 Jun 2017

References

  • Agarwal, S., Saini, S., Parashar, D., Verma, A., Sinha, A., Jagadish, N., et al. (2013) The novel cancer testis antigen A-kinase anchor protein 4 (AKAP4) is a potential target for immunotherapy of ovarian serous carcinoma. Oncoimmunology 2: e24270.
  • Agarwal, V., Bell, G.W., Nam, J.W. and Bartel, D.P. (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4: e05005.
  • Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., et al. (2009) miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res 38: D137–141.
  • American Cancer Society (ACS) (2015) Cancer Facts and Figures 2015. Atlanta, GA, USA.
  • Antony, P.M., Balling, R. and Vlassis, N. (2012) From systems biology to systems biomedicine. Curr Opin Biotechnol 23: 604–608.
  • Aragon-Ching, J.B. (2014) The evolution of prostate cancer therapy: targeting the androgen receptor. Front Oncol 4: 295.
  • Arend, R.C., Londoño-Joshi, A.I., Samant, R.S., Li, Y., Conner, M., Hidalgo, B., et al. (2014) Inhibition of Wnt/β-catenin pathway by niclosamide: a therapeutic target for ovarian cancer. Gynecol Oncol 134:112-120.
  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, M., et al. (2000) Gene ontology: tool for the unification of biology. Nat Genet 25: 25–29.
  • Bader, G.D., Betel, D. and Hogue, C.W. (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31: 248–250.
  • Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.
  • Bauckman, K., Campla, C. and Nanjundan, M. (2012) Dysregulated TGFB Signaling in Ovarian Cancer, Ovarian Cancer - Basic Science Perspective, Dr. Samir Farghaly (Ed.), ISBN: 978-953-307-812-0, InTech.
  • Becker, K.G., Barnes, K.C., Bright, T.J. and Wang, S.A. (2004) The genetic association database. Nat Genet 36: 431–432.
  • Betel, D., Wilson, M., Gabow, A., Marks, D.S. and Sander, C. (2008) The microRNA. org resource: targets and expression. Nucleic Acids Res 36: 149–153.
  • Bhartiya, D., Pal, K., Ghosh, S., Kapoor, S., Jalali, S., Panwar, B., et al. (2013) lncRNome: a comprehensive knowledgebase of human long noncoding RNAs. Database 2013: bat034.
  • Bignotti, E., Tassi, R.A., Calza, S., Ravaggi, A., Romani, C., Rossi, E., et al. (2006) Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol Oncol 103: 405–416.
  • Bignotti, E., Tassi, R.A., Calza, S., Ravaggi, A., Rossi, E., Donzelli, C., et al. (2013) Secretoglobin expression in ovarian carcinoma: lipophilin B gene upregulation as an independent marker of better prognosis. J Transl Med 11: 162.
  • Bordbar, A., Feist, A.M., Usaite-Black, R., Woodcock, J., Palsson, B.O. and Famili, I. (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol 5: 180.
  • Borhani, N., Manoochehri, M., Gargari, S.S., Novin, M.G., Ardalan Mansouri, A. and Mir Davood Omrani, M.D. (2014) Decreased expression of proapoptotic genes caspase-8- and BCL2-associated agonist of cell death (BAD) in ovarian cancer. Clin Ovarian Cancer Other Gynecol Malig 7: 18–23.
  • Brachova, P., Thiel, K.W. and Leslie, K.K. (2013) The Consequence of Oncomorphic TP53 Mutations in Ovarian Cancer. Int J Mol Sci 14: 19257–19275.
  • Budhu, A., Roessler, S., Zhao, X., Yu, Z., Forgues, M., Ji, J., et al. (2013) Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology 144: 1066–1075.
  • Burotto, M., Chiou, V.L., Lee, J.M. and Kohn, E.C. (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120: 3446–3456.
  • Buys, S.S., Partridge, E., Black, A., Johnson, C.C., Lamerato, L., Isaacs, C., et al. (2011) Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening randomized controlled trial. JAMA 305: 2295–2303.
  • Buys, T.P., Chari, R., Lee, E.H., Zhang, M., MacAulay, C., Lam, S., et al. (2007) Genetic changes in the evolution of multidrug resistance for cultured human ovarian cancer cells. Genes Chromosomes Cancer 46: 1069–1079.
  • Calimlioglu, B., Karagoz, K., Sevimoglu, T., Kilic, E., Gov, E. and Arga, K.Y. (2015) Tissue-Specific Molecular Biomarker Signatures of Type 2 Diabetes: An Integrative Analysis of Transcriptomics and Protein–Protein Interaction Data. OMICS 19: 563–573.
  • Capaccione, K.M. and Pine, S.R. (2013) The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis 34: 1420–1430.
  • Carbon, S., Ireland, A., Mungall, C.J., Shu, S., Marshall, B. and Lewis, S. (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25: 288–289.
  • Chakrabarty, A., Tranguch, S., Daikoku, T., Jensen, K., Furneaux, H. and Dey, S.K. (2007) MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A 104: 15144–15149.
  • Chatr-Aryamontri, A., Breitkreutz, B.J., Oughtred, R., Boucher, L., Heinicke, S., Chen, D., et al. (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43: D470–D478.
  • Cheaib, B., Auguste, A. and Leary, A. (2015) The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. Chin J Cancer 34: 4–16.
  • Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., et al. (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41: D983–D986.
  • Chen, K. and Rajewsky, N. (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38: 1452–1456.
  • Chen, R., Alvero, A.B., Silasi, D.A., Kelly, M.G., Fest, S., Visintin, I., et al. (2008) Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 27: 4712–4723.
  • Cheng, Z., Guo, J., Chen, L., Luo, N., Yang, W. and Qu, X. (2015) A long noncoding RNA AB073614 promotes tumorigenesis and predicts poor prognosis in ovarian cancer. Oncotarget 6: 25381–25389.
  • Chiromatzo, A.T., Oliveira, G., Pereira, A., Costa, C., Montesco, D., Gras, F., et al. (2007) miRNApath: a database of miRNAs, target genes and metabolic pathways. Genet Mol Res 6: 859–865.
  • Cho, S.I., Jang, Y., Jun, S., Yoon, M., Ko, Y., Kwon, I., et al. (2013) MiRGator v3. 0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res 41: D252–D257.
  • Choi, C.H., Choi, J.J., Park, Y.A., Lee, Y.Y., Song, S.Y., Sung, C.O., et al. (2012) Identification of differentially expressed genes according to chemosensitivity in advanced ovarian serous adenocarcinomas: expression of GRIA2 predicts better survival. Br J Cancer 107: 91–99.
  • Chou, J. and Werb, Z. (2012) MicroRNAs Play a Big Role in Regulating Ovarian Cancer–Associated Fibroblasts and the Tumor Microenvironment. Cancer Discov 2: 1078–1080.
  • Christian, S.L., Zu, D., Licursi, M., Komatsu, Y., Pongnopparat, T., Codner, D.A., et al. (2012) Suppression of IFN-induced transcription underlies IFN defects generated by activated Ras/MEK in human cancer cells. PloS One 7: e44267.
  • Corney, D.C., Hwang, C.I., Matoso, A., Vogt, M., Flesken-Nikitin, A., Godwin, A.K., et al. (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res, 16: 1119–1128.
  • Creighton, C.J., Hernandez-Herrera, A., Jacobsen, A., Levine, D.A., Mankoo, P., Schultz, N., et al. (2012) Integrated analyses of microRNAs demonstrate their widespread influence on gene expression in high-grade serous ovarian carcinoma. PloS one 7: e34546.
  • Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., et al. (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39: D691–697.
  • Cybulski, M., Jeleniewicz, W., Nowakowski, A., Stenzel-Bembenek, A., Tarkowski, R., Kotarski, J., et al. (2015) Cyclin I mRNA expression correlates with kinase insert domain receptor expression in human epithelial ovarian cancer. Anticancer Res 35: 1115–1119.
  • Davidson, B., Holth, A., Hellesylt, E., Hadar, R., Katz, B., Tropé, C.G., et al. (2016) HUR mRNA expression in ovarian high-grade serous carcinoma effusions is associated with poor survival. Hum Pathol 48: 95–101.
  • Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38: 1060–1065.
  • Dezső, Z., Oestreicher, J., Weaver, A., Santiago, S., Agoulnik, S., Chow, J., et al. (2014) Gene Expression Profiling Reveals Epithelial Mesenchymal Transition (EMT) Genes Can Selectively Differentiate Eribulin Sensitive Breast Cancer Cells. PloS One 9: e106131.
  • Didžiapetrienė, J., Bublevič, J., Smailytė, G., Kazbarienė, B. and Stukas R. (2014) Significance of blood serum catalase activity and malondialdehyde level for survival prognosis of ovarian cancer patients. Medicina 50: 204–208.
  • Dinger, M.E., Pang, K.C., Mercer, T.R., Crowe, M.L., Grimmond, S.M. and Mattick, J.S. (2009) NRED: a database of long noncoding RNA expression. Nucleic Acids Res 37: D122–D126.
  • Dobbin, Z.C. and Landen, C.N. (2013) The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci 14: 8213–8227.
  • Dong, Y., Li, J., Han, F., Chen, H., Zhao, X., Qin, Q., et al. (2015) High IGF2 expression is associated with poor clinical outcome in human ovarian cancer. Oncol Rep 34: 936–942.
  • Duarte, N.C., Becker, S.A., Jamshidi, N., Thiele, I., Mo, M.L., Vo, T.D., et al. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104: 1777–1782.
  • Ducros, E., Mirshahi, S., Azzazene, D., Camilleri-Broët, S., Mery, E., Al Farsi, H., et al. (2012) Endothelial protein C receptor expressed by ovarian cancer cells as a possible biomarker of cancer onset. Int J Oncol 41: 433–440.
  • Duffy, M.J., Sturgeon, C.M., Sölétormos, G., Barak, V., Molina, R., Hayes, D.F., et al. (2015) Validation of new cancer biomarkers: a position statement from the European group on tumor markers. Clin Chem 61: 809–820.
  • Fekete, T., Rásó, E., Pete, I., Tegze, B., Liko, I. and Munkácsy, G. (2012) Meta‐analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples. Int J Cancer 131: 95–105.
  • Fernandez‐Mercado, M., Manterola, L., Larrea, E., Goicoechea, I., Arestin, M., Armesto, M., et al. (2015) The circulating transcriptome as a source of non‐invasive cancer biomarkers: concepts and controversies of non‐coding and coding RNA in body fluids. J Cell Mol Med 19: 2307–2323.
  • Frampton, A.E., Castellano, L., Colombo, T., Giovannetti, E., Krell, J., Jacob, J., et al. (2014) MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 146: 268–277.
  • Gao, Y., Meng, H., Liu, S., Hu, J., Zhang, Y., Jiao, T., et al. (2015) LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Gen 24: 841–852.
  • Garcia-Albornoz, M., Thankaswamy-Kosalai, S., Nilsson, A., Varemo, L., Nookaew, I. and Nielsen J. (2014) BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data. Nucleic Acids Res 42: 175–181.
  • Garg, M., Chaurasiya, D., Rana, R., Jagadish, N., Kanojia, D., Dudha, N., et al. (2007) Sperm-associated antigen 9, a novel cancer testis antigen, is a potential target for immunotherapy in epithelial ovarian cancer. Clin Cancer Res 13: 1421–1428.
  • Gatcliffe, T.A., Monk, B.J., Planutis, K. and Holcombe, R.F. (2008) Wnt signaling in ovarian tumorigenesis. Int J Gynecol Cancer 18: 954–962.
  • Gennarino, V.A, D’Angelo, G., Dharmalingam, G., Fernandez, S., Russolillo, G., Sanges, R, et al. (2012) Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res 22: 1163–1172.
  • Glass, K., Quackenbush, J., Spentzos, D., Haibe-Kains, B. and Yuan, G.C. (2015) A network model for angiogenesis in ovarian cancer. BMC Bioinformatics 16: 115.
  • Gloss, B.S., Patterson, K.I., Barton, C.A., Gonzalez, M., Scurry, J.P., Hacker, N.F., et al. (2012) Integrative genome-wide expression and promoter DNA methylation profiling identifies a potential novel panel of ovarian cancer epigenetic biomarkers. Cancer Lett 318: 76–85.
  • Gov, E. and Arga, K.Y. (2016) Interactive cooperation and hierarchical operation of microRNA and transcription factor crosstalk in human transcriptional regulatory network. IET Syst Biol 10: 219–228.
  • Grammatikakis, I., Gorospe, M. and Abdelmohsen, K. (2013) Modulation of cancer traits by tumor suppressor microRNAs. Int J Mol Sci 14: 1822–1842.
  • Groeneweg, J.W., DiGloria, C.M., Yuan, J., Richardson, W.S., Growdon, W.B., Sathyanarayanan, S., et al. (2014b) Inhibition of Notch signaling in combination with Paclitaxel reduces platinum-resistant ovarian tumor growth. Front Oncol 2014: 171.
  • Groeneweg, J.W., Foster, R., Growdon, W.B., Verheijen, R.H. and Rueda, B.R. (2014a) Notch signaling in serous ovarian cancer. J Ovarian Res 7: 95.
  • Guo, L.M., Pu, Y., Han, Z., Liu, T., Li, Y.X., Liu, M., et al. (2009) MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J 276: 5537–5546.
  • Guo, Q., Cheng, Y., Liang, T., He, Y., Ren, C. and Sun, L., et al. (2015) Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNAbiomarkers in ovarian cancer malignant progression. Sci Rep 5: 17683.
  • Hajjari, M. and Salavaty, A. (2015) HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 12: 1–9.
  • Hata, K., Dhar, D.K., Watanabe, Y., Nakai, H. and Hoshiai, H. (2007) Expression of metastin and a G-protein-coupled receptor (AXOR12) in epithelial ovarian cancer. Eur J Cancer 43: 1452–1459.
  • He, J., Jing, Y., Li, W., Qian, X., Xu, Q., Li, F.S., et al. (2013) Roles and Mechanism of miR-199a and miR-125b in Tumor Angiogenesis. PLoS ONE 8: e56647.
  • He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007) A microRNA component of the p53 tumor suppressor network. Nature 447: 1130–1134.
  • He, W., Kularatne, S.A., Kalli, K.R., Prendergast, F.G., Amato, R.J., Klee, G.G., et al. (2008) Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor‐specific fluorescent ligands. Int J Cancer 123: 1968–1973.
  • Heo, J.H., Song, J.Y., Jeong, J.Y., Kim, G., Kim, T.H., Kang, H., et al. (2015) Fibulin-5 is a tumor suppressor inhibiting cell migration and invasion in ovarian cancer. J Clin Pathol 69: 109–116.
  • Hippisley-Cox, J. and Coupland, C. (2012) Identifying women with suspected ovarian cancer in primary care: derivation and validation of algorithm. BMJ 344: d8009.
  • Hsu, S.D., Tseng, Y.T., Shrestha, S., Lin, Y.L., Khaleel, A., Chou, C.H., et al. (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42: D78–D85.
  • Huang, S., Qing, C., Huang, Z., Zhu, Y. (2016) The long non-coding RNA CCAT2 is up-regulated in ovarian cancer and associated with poor prognosis. Diagn Pathol 11(1): 49.
  • Huang da, W., Sherman, B.T. and Lempicki, R.A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1–13.
  • Huang, D.W., Sherman, B.T., Tan, Q., Kir, J., Liu, D., Bryant, D., et al. (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35: 169–175.
  • Iorio, M.V., Visone, R., Di Leva, G., Donati, V., Petrocca, F., Casalini, P., et al. (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67: 8699–8707.
  • Jiang, Q., Wang, J., Wu, X., Ma, R., Zhang, T., Jin, S., et al. (2015) LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic acids Res 43: D193–D196.
  • Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37: D98–104.
  • Jin, N., Wu, H., Miao, Z., Huang, Y., Hu, Y., Bi, X., et al. (2015) Network-based survival-associated module biomarker and its crosstalk with cell death genes in ovarian cancer. Sci Rep 5: 11566.
  • Joshi, H.P., Subramanian, I.V., Schnettler, E.K., Ghosh, G., Rupaimoole, R., Evans, C., et al. (2014) Dynamin 2 along with microRNA-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis. Proc Natl Acad Sci U S A 111: 5331–5336.
  • Ju, W., Yoo, B.C., Kim, I.J., Kim, J.W., Kim, S.C. and Lee, H.P. (2009) Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res 18: 47–56.
  • Kamburov, A., Grossmann, A., Herwig, R. and Stelzl, U. (2012) Cluster-based assessment of protein-protein interaction confidence. BMC Bioinform 13: 262.
  • Kan, C.W., Hahn, M.A., Gard, G.B., Maidens, J., Huh, J.Y., Marsh, D.J., et al. (2012) Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer 12: 627.
  • Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28: 27–30.
  • Karagoz, K., Lehman, H.L., Stairs, D.B., Sinha, R. and Arga, K.Y. (2016a) Proteomic and Metabolic Signatures of Esophageal Squamous Cell Carcinoma. Curr Cancer Drug Targets 16: 721–736.
  • Karagoz, K., Sevimoglu, T. and Arga, K.Y. (2016b) Integration of multiple biological features yields high confidence human protein interactome. J Theor Biol 16: 85–96.
  • Karagoz, K., Sinha, R. and Arga, K.Y. (2015) Triple Negative Breast Cancer: A Multi-Omics Network Discovery Strategy for Candidate Targets and Driving Pathways. OMICS 19: 115–30.
  • Ko, S.Y., Barengo, N., Ladanyi, A., Lee, J.S., Marini, F., Lengyel, E., et al. (2012) HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest 122: 3603–3617.
  • Komiyama, S., Kurahashi, T., Ishikawa, M., Tanaka, K., Komiyama, M., Mikami, M., et al. (2011) Expression of TGFß1 and its receptors is associated with biological features of ovarian cancer and sensitivity to paclitaxel/carboplatin. Oncol Rep 25: 1131–1138.
  • Kori, M., Gov, E. and Arga, K.Y. (2016) Molecular signatures of ovarian diseases: insights from network medicine perspective. Syst Biol Reprod Med 62: 266–282.
  • Korpal, M., Lee, E.S., Hu, G. and Kang, Y. (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283: 14910–14914.
  • Koti, M., Gooding, R.J., Nuin, P., Haslehurst, A., Crane, C., Weberpals, J., et al. (2013) Identification of the IGF1/PI3K/NF κB/ERK gene signalling networks associated with chemotherapy resistance and treatment response in high-grade serous epithelial ovarian cancer. BMC Cancer 13: 549.
  • Kozomara, A. and Griffiths-Jones, S. (2013) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic acids Res 42: D68–73.
  • Krüger, J. and Rehmsmeier, M. (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic acids Res 34: 451–454.
  • Kubiczkova, L., Sedlarikova, L., Hajek, R. and Sevcikova, S. (2012) TGF-β - an excellent servant but a bad master. J Transl Med 10: 183.
  • Kulbe, H., Chakravarty, P., Leinster, D.A., Charles, K.A., Kwong, J., Thompson, R.G., et al. (2012) A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 72: 66–75.
  • Lachej, N., Didžiapetrienė, J., Kazbarienė, B., Kanopienė, D. and Jonušienė, V. (2012) Association between Notch signaling pathway and cancer. Acta Med Litu 19: 427–437.
  • Lawrenson, K., Grun, B., Lee, N., Mhawech-Fauceglia, P., Kan, J., Swenson, S., et al. (2015) NPPB is a novel candidate biomarker expressed by cancer-associated fibroblasts in epithelial ovarian cancer. Int. J. Cancer 136: 1390–1401.
  • Le Page, C., Ouellet, V., Quinn, M.C., Tonin, P.N., Provencher, D.M. and Mes-Masson, A.M. (2008) BTF4/BTNA3.2 and GCS as candidate mRNA prognostic markers in epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 17: 913–920.
  • Leary, A., Auclin, E., Pautier, P. and Lhommé, C. (2013) The PI3K/Akt/mTOR Pathway in Ovarian Cancer: Biological Rationale and Therapeutic Opportunities. Rijeka, Croatia: Intech, pp. 275–302. Available from: http://dx.doi.org/10.5772/54170.
  • Lee, G.L., Dobi, A., and Srivastava, S. (2011) Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol 8: 123–124.
  • Lei, Y.Y., Wang, W.J., Mei, J.H. and Wang, C.L. (2014) Mitogen-activated protein kinase signal transduction in solid tumors. Asian Pac J Cancer Prev 15: 8539–8548.
  • LePendu, P., Musen, M.A. and Shah, N.H. (2011) Enabling enrichment analysis with the Human Disease Ontology. J Biomed Inform 44: S31–38.
  • Li, B.Q., Huang, T., Liu, L., Cai, Y.D. and Chou, K.C. (2012) Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS one 7: e33393.
  • Li, F.J., Wang, H.Y., Feng, X.L., Li, P.P., Shu, T., Zhao, X.H., et al. (2016b) Expression and clinical significance of ELOVL6 gene in high-grade serous ovarian carcinoma. Zhonghua Fu Chan Ke Za Zhi 51: 192–197.
  • Li, H., Zeng, J. and Shen, K. (2014) PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet 290: 1067–1078.
  • Li, J., Yang, S., Su, N., Wang, Y., Yu, J., Qiu, H., et al. (2016a) Overexpression of long non-coding RNA HOTAIR leads to chemoresistance by activating the Wnt/β-catenin pathway in human ovarian cancer. Tumor Biol 37: 2057–2065.
  • Li, J.H., Liu, S., Zhou, H., Qu, L.H. and Yang, J.H. (2013) starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42: D92–D97.
  • Li, M., Balch, C., Montgomery, J.S., Jeong, M., Chung, J.H., Yan, P., et al. (2009) Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics 2: 34.
  • Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., et al. (2014) HMDD v2. 0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42: D1070–D1074.
  • Lin, Y., Cui, M., Shi, Y., Wang, F., Wang, Q. and Teng, H. (2011) Increased COX-2 expression in patients with ovarian cancer. Afr J Biotechnol 10: 15040–15043.
  • Liu, E.T. and Lauffenburger, D.A. (2009) Systems biomedicine: concepts and perspectives. Academic Press, Elsevier, USA.
  • Liu, S.P., Yang, J.X., Cao, D.Y. and Shen, K. (2013) Identification of differentially expressed long non-coding RNAs in human ovarian cancer cells with different metastatic potentials. Cancer Biol Med 10: 138–141.
  • Lopez, Y., Nakai, K. and Patil, A. (2015) HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species. Database (Oxford) 2015: bav117.
  • Lu, J., Xie, F., Geng, L., Shen, W., Sui, C. and Yang, J. (2015) Investigation of serum lncRNA-uc003wbd and lncRNA-AF085935 expression profile in patients with hepatocellular carcinoma and HBV. Tumor Biol 36: 3231–3236.
  • Ma, R., Ye, X., Cheng, H., Ma, Y., Cui, H. and Chang, X. (2015) PRSS3 expression is associated with tumor progression and poor prognosis in epithelial ovarian cancer. Gynecol Oncol 137: 546–552.
  • Ma, Y., Ren, Y., Zhang, X., Lin, L., Liu, Y., Rong, F., et al. (2014) High GOLPH3 expression is associated with a more aggressive behavior of epithelial ovarian carcinoma. Virchows Arch 464: 443–452.
  • MacDonald, B.T., Tamai, K. and He, X. (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26.
  • Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., et al. (2013) Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol 9: 649.
  • Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M. and Nielsen, J. (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5: 3083.
  • Merritt, M.A., Parsons, P.G., Newton, T.R., Martyn, A.C, Webb, P.M., Green, A.C., et al. (2009) Expression profiling identifies genes involved in neoplastic transformation of serous ovarian cancer. BMC Cancer 9: 378.
  • Mirzayans, R., Andrais, B., Scott, A. and Murray, D. (2012) New insights into p53 signaling and cancer cell response to DNA damage: Implications for cancer therapy. J Biomed Biotechnol 2012: 170325.
  • Mitra, A.K., Zillhardt, M., Hua, Y., Tiwari, P., Murmann, A.E., Peter, M.E., et al. (2012) MicroRNAs Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts in Ovarian Cancer. Cancer Discov 2: 1100–1108.
  • Moreno, C.S., Matyunina, L., Dickerson E.B., Schubert, N., Bowen, N.J., Logani, S., et al. (2007) Evidence that p53-Mediated Cell-Cycle-Arrest Inhibits Chemotherapeutic Treatment of Ovarian Carcinomas. PLoS One 2: e441.
  • Morone, S., Lo-Buono, N., Parrotta, R., Giacomino, A., Nacci, G., Brusco, A., et al. (2012) Overexpression of CD157 contributes to epithelial ovarian cancer progression by promoting mesenchymal differentiation. PloS One 7: e43649.
  • Mostowska, A., Pawlik, P., Sajdak, S., Markowska, J., Pawałowska, M., Lianeri, M., et al. (2014) An analysis of polymorphisms within the Wnt signaling pathway in relation to ovarian cancer risk in a Polish population. Mol Diagn Ther 18: 85–91.
  • Moustakas, A., Pardali, K., Gaal, A. and Heldin, C.H. (2002) Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 82: 85–91.
  • Nakamura, K., Sawada, K., Yoshimura, A., Kinose, Y., Nakatsuka, E., and Kimura, T. (2016) Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer 15: 48.
  • Nam, E.J., Lee, M., Yim, G.W., Kim, J.H., Kim, S., Kim, S.W., et al. (2012) MicroRNA profiling of a CD133+ spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line. BMC Med Genomics 5: 18.
  • Ntziachristos, P., Lim, J.S., Sage, J. and Aifantis, I. (2014) From Fly Wings to Targeted Cancer Therapies: A Centennial for Notch Signaling. Cancer Cell 25: 318–334.
  • Palmer, C., Duan, X., Hawley, S., Scholler, N., Thorpe, J.D., Sahota, R.A., et al. (2008) Systematic evaluation of candidate blood markers for detecting ovarian cancer. PLoS One 3: e2633.
  • Pamula-Pilat, J., Rubel, T., Rzepecka, I.K., Olbryt, M., Herok, R., Dansonka-Mieszkowska, A., et al. (2014) Gene expression profiles in three histologic types, clear-cell, endometrioid and serous ovarian carcinomas. J Biol Regul Homeost Agents 28: 659–674.
  • Paraskevopoulou, M.D., Georgakilas, G., Kostoulas, N., Reczko, M., Maragkakis, M., Dalamagas, T.M., et al. (2013) DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res 41: D239–D245.
  • Parikh, A., Lee, C., Joseph, P., Marchini, S., Baccarini, A., Kolev, V., et al. (2014) microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial–mesenchymal transition. Nat Commun 5: 2977.
  • Park, C., Yu, N., Choi, I., Kim, W. and Lee, S. (2014) lncRNAtor: a comprehensive resource for functional investigation of long noncoding RNAs. Bioinformatics 30: 2480–2485.
  • Patil, K.R. and Nielsen, J. (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102: 2685–2689.
  • Paulsson, J. and Micke, P. (2014) Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol 25: 61–68.
  • Peng, D.X., Luo, M., Qiu, L.W., He, Y.L. and Wang, X.F. (2012) Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep 27: 1238–1244.
  • Persico, M., Ceol, A., Gavrila, C., Hoffmann, R., Florio, A. and Cesareni, G. (2005) Homomint: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinform 6: S21.
  • Pfister, T.D., Reinhold, W.C., Agama, K., Gupta, S., Khin, S.A., Kinders, R.J., et al. (2009) Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther 8: 1878–1884.
  • Pink, R.C., Samuel, P., Massa, D., Caley, D.P., Brooks, S.A. and Carter, D.R.F. (2015) The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 137: 143–51.
  • Porta, C., Paglino, C. and Mosca, A. (2014) Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol 4: 64.
  • Prasad, K.T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al. (2009) Human Protein Reference Database-2009 Updat. Nucleic Acids Res 37: D767–D772.
  • Qi, P., Zhou, X.-y. and Du, X. (2016) Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer 15: 39.
  • Qiu, C., Wang, J., Yao, P., Wang, E. and Cui, Q. (2010) microRNA evolution in a human transcription factor and microRNA regulatory network. BMC Syst Biol 4: 90.
  • Qiu, J.J., Lin, Y.Y., Ding, J.X., Feng, W.W., Jin, H.Y. and Hua, K.Q. (2015) Long non-coding RNA ANRIL predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer. Int J Oncol 46: 2497–2505.
  • Qiu, J.J., Lin, Y.Y., Ye, L.C., Ding, J.X., Feng, W.W., Jin, H.Y., et al. (2014) Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol 134: 121–128.
  • Quek, X.C., Thomson, D.W., Maag, J.L., Bartonicek, N., Signal, B., Clark, M.B., et al. (2014) lncRNAdb v2. 0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43: D168–D173.
  • Rennie, W., Liu, C., Carmack, C.S., Wolenc, A., Kanoria, S., Lu, J., et al. (2014) STarMir: a web server for prediction of microRNA binding sites. Nucleic acids Res 42: 114–118.
  • Ross, D.T., Scherf, U., Eisen, M.B., Perou, C.M., Rees, C., Spellman, P., et al. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24: 227–235.
  • Samuel, P., Pink, R.C., Caley, D.P., Currie, J.M., Brooks, S.A. and Carter, D.R. (2016) Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells. Tumor Biol 37: 2565–2573.
  • Schaefer, M.H., Fontaine, J.F., Vinayagam, A., Porras, P., Wanker, E.E. and Andrade-Navarro, M.A. (2012) Hippie: integrating protein interaction networks with experiment based quality scores. PLoS One 7: e31826.
  • Schoeberl, B., Kudla, A., Masson, K., Kalra, A., Curley, M., Finn, G., et al. (2017) Systems biology driving drug development: from design to the clinical testing of the anti-ErbB3 antibody seribantumab (MM-121). NPJ Syst Biol Appl 3: 16034.
  • Sengupta, D. and Bandyopadhyay, S. (2013) Topological patterns in microRNA–gene regulatory network: studies in colorectal and breast cancer. Mol BioSyst 9:1360-1371.
  • Sevimoglu, T. and Arga, K.Y. (2014) The role of protein interaction networks in systems biomedicine. Comput Struct Biotechnol J 11: 22–27.
  • Sevimoglu, T. and Arga, K.Y. (2015) Computational Systems Biology of Psoriasis: Are We Ready for the Age of Omics and Systems Biomarkers? OMICS 19: 669–687.
  • Shi, Y. and Massagué, J. (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113: 685–700.
  • Shields, B.B., Pecot, C.V., Gao, H., McMillan, E., Potts, M., Nagel, C., et al. (2015) A genome-scale screen reveals context-dependent ovarian cancer sensitivity to miRNA overexpression. Mol Syst Biol 11: 842.
  • Shlomi, T., Cabili, M.N., Herrgard, M.J., Palsson, B.Ø. and Ruppin, E. (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26: 1003–1010.
  • Siegel, R., Ma, J., Zou, Z. and Jemal, A. (2014) Cancer statistics, 2014. CA: a cancer journal for clinicians 64: 9–29.
  • Silva, J.M., Boczek, N.J., Berres, M.W., Ma, X. and Smith, D.I. (2011) LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol 8: 496–505.
  • Sims, A., Zweemer, A.J., Nagumo, Y., Faratian, D., Muir, M., Dodds, M., et al. (2012) Defining the molecular response to trastuzumab, pertuzumab and combination therapy in ovarian cancer. Br J Cancer 106: 1779–1789.
  • Spillman, M.A., Manning, N.G., Dye, W.W., Sartorius, C.A., Post, M.D., Harrell, J.C., et al. (2010) Tissue-specific pathways for estrogen regulation of ovarian cancer growth and metastasis. Cancer Res 70: 8927–8936.
  • Stegh, A.H. (2012) Targeting the p53 signaling pathway in cancer therapy- the promises, challenges and perils. Expert Opin Ther Targets 16: 67–83.
  • Stuckey, A., Fischer, A., Miller, D.H., Hillenmeyer, S., Kim, K.K., Ritz, A., et al. (2011) Integrated genomics of ovarian xenograft tumor progression and chemotherapy response. BMC Cancer 11: 308.
  • Su, F., Lang, J., Kumar, A., Ng, C., Hsieh, B., Suchard, M.A., Reddy, S.T. and Farias-Eisner, R. (2007) Validation of candidate serum ovarian cancer biomarkers for early detection. Biomark insights 2: 369.
  • Sun, F., Ding, W., He, J.H., Wang, X.J., Ma, Z.B. and Li, Y.F. (2015) Stomatin-like protein 2 is overexpressed in epithelial ovarian cancer and predicts poor patient survival. BMC Cancer 15: 746.
  • Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S. and Miyazono, K. (2009) Modulation of microRNA processing by p53. Nature 460: 529–533.
  • Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2015) String V10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43: D447–D452.
  • Teplinsky, E. and Muggia, F. (2015) EGFR and HER2: is there a role in ovarian cancer? Transl Cancer Res 4: 107–117.
  • Thériault, B.L., Pajovic, S., Bernardini, M.Q., Shaw, P.A. and Gallie, B.L. (2012) Kinesin family member 14: an independent prognostic marker and potential therapeutic target for ovarian cancer. Int J Cancer 130: 1844–1854.
  • Thiele, I., Swainston, N., Fleming, R.M., Hoppe, A., Sahoo, S., Aurich, M.K., et al. (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31: 419–425.
  • Tian, M., Neil, J.R. and Schiemann, W.P. (2011) Transforming growth factor-β and the hallmarks of cancer. Cell Signal 23: 951–962.
  • Tseng, G.C., Ghosh, D. and Feingold, E. (2012) Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res 40: 3785–3799.
  • Tung, C.S., Mok, S.C., Tsang, Y.T., Zu, Z., Song, H, Liu, J., et al. (2009) PAX2 expression in low malignant potential ovarian tumors and low-grade ovarian serous carcinomas. Mod Pathol 22: 1243–1250.
  • Uhlen, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A, et al. (2015) Tissue-based map of the human proteome. Science 347: 1260419.
  • Vergoulis, T., Vlachos, I.S., Alexiou, P., Georgakilas, G., Maragkakis, M., Reczko, M., et al. (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40: D222–D229.
  • Volders, P.J., Verheggen, K., Menschaert, G., Vandepoele, K., Martens, L., Vandesompele, J., et al. (2015) An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 43: D174–D180.
  • Vousden, K.H. and Prives, C. (2009) Blinded by the light: the growing complexity of p53. Cell 137: 413–431.
  • Wang, C.-Y., Hua, L., Yao, K.-H., Chen, J.-T., Zhang, J.-J. and Hu, J.-H. (2015) Long non-coding RNA CCAT2 is up-regulated in gastric cancer and associated with poor prognosis. Int J Clin Exp Pathol 8: 779–785.
  • Wang, H., Lu, R., Xie, S., Zheng, H., Wen, X., Gao, X., et al. (2014) SIRT7 Exhibits Oncogenic Potential in Human Ovarian Cancer Cells. Asian Pac. J. Cancer Prev 16: 3573–3577.
  • Wang, J., Duncan, D., Shi, Z. and Zhang, B. (2013) WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 41: 77–83.
  • Wang, J., Lu, M., Qiu, C. and Cui, Q. (2010) TransmiR: a transcription factor–microRNA regulation database. Nucleic Acids Res 38: D119–D122.
  • Wang, S. and Zhang, S. (2011) Dickkopf-1 is frequently overexpressed in ovarian serous carcinoma and involved in tumor invasion. Clin Exp Metastasis 28: 581–591.
  • Wang, X. (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14: 1012–1017.
  • Wang, Y., Eddy, J.A. and Price, N.D. (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using Mcadre. BMC Syst Biol 6: 153.
  • Willis, S., Villalobos, V.M., Gevaert, O., Abramovitz, M., Williams, C., Sikic, B.I., et al. (2016) Single Gene Prognostic Biomarkers in Ovarian Cancer: A Meta-Analysis. PLoS One 11: e0149183.
  • Wong, R.R., Chan, L.K., Tsang, T.P., Lee, C.W., Cheung, T.H., Yim, S.F, et al. (2011) CHD5 Downregulation Associated with Poor Prognosis in Epithelial Ovarian Cancer. Gynecol Obstet Invest 72: 203–207.
  • Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X. and Li T. (2009). miRecords: an integrated resource for microRNA–target interactions. Nucleic Acids Res 37: D105–D110.
  • Xie, B., Ding, Q., Han, H. and Wu, D. (2013) miRCancer: a microRNA–cancer association database constructed by text mining on literature. Bioinformatics 29: 638–644.
  • Xu, N., Chen, F., Wang, F., Lu, X., Wang, X., Lv, M. and Lu, C. (2015) Clinical significance of high expression of circulating serum lncRNA RP11-445H22. 4 in breast cancer patients: a Chinese population-based study. Tumor Biol 36: 7659–7665.
  • Xue, J., Lin, X., Chiu, W.T., Chen, Y.H., Yu, G., Liu, M., et al. (2014) Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β–dependent cancer metastasis. J Clin Invest 124: 564.
  • Yang, D., Sun, Y., Hu, L., Zheng, H., Ji, P., Pecot, C.V., et al. (2013a) Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23: 186–199.
  • Yang, H., Kong, W., He, L., Zhao, J.J., O’Donnell, J.D., Wang, J., et al. (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68: 425–433.
  • Yang, J.H., Li, J.H., Jiang, S., Zhou, H. and Qu, L.H. (2013b) ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res 41: D177–D187.
  • Yang, L., Li, N., Wang, H., Jia, X., Wang, X. and Luo, J. (2012) Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncol Rep 28: 592–600.
  • Yu, H., Tu, K., Wang, Y.J., Mao, J.Z., Xie, L., Li, Y.Y., et al. (2012b) Combinatorial network of transcriptional regulation and microRNA regulation in human cancer. BMC Syst Biol 6: 61.
  • Yu, X., Vazquez, A., Levine, A.J. and Carpizo, D.R. (2012a) Allele-specific p53 mutant reactivation. Cancer Cell 2: 614–625.
  • Yuan, J., Wu, W., Xie, C., Zhao, G., Zhao, Y. and Chen, R. (2014) NPInter v2. 0: an updated database of ncRNA interactions. Nucleic Acids Res 42: D104–D108.
  • Zhang, H., Qiu, J., Ye, C., Yang, D., Gao, L., Su, Y., et al. (2014a) ROR1 expression correlated with poor clinical outcome in human ovarian cancer. Sci Rep 4: 5811.
  • Zhang, Q., Burdette, J.E. and Wang, J.P. (2014b) Integrative network analysis of TCGA data for ovarian cancer. BMC Syst Biol 8: 1338.
  • Zhang, W., Ota, T., Shridhar, V., Chien, J., Wu, B. and Kuang, R. (2013) Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment. PLoS Comput Biol 9: e1002975.
  • Zhao, Y., Li, H., Fang, S., Kang, Y., Wu, W., Hao, Y., et al. (2016) NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44: D203–208.
  • Zhu, H. and Yu, J.J. (2010) Gene expression patterns in the histopathological classification of epithelial ovarian cancer. Exp Ther Med 1: 187–192.
  • Zhu, T., Gao, W., Chen, X., Zhang, Y., Wu, M., Zhang, P., and Wang, S. (2017) A Pilot Study of Circulating MicroRNA-125b as a Diagnostic and Prognostic Biomarker for Epithelial Ovarian Cancer. Int J Gynecol Cancer 27: 3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.