1,377
Views
9
CrossRef citations to date
0
Altmetric
Clinical: Molecular Diagnostics

CCDC9 is identified as a novel candidate gene of severe asthenozoospermia

, , , ORCID Icon, , , , , , , ORCID Icon & show all
Pages 465-473 | Received 18 Apr 2019, Accepted 11 Aug 2019, Published online: 10 Sep 2019

References

  • Abdelhamed Z, Vuong SM, Hill L, Shula C, Timms A, Beier D, Campbell K, Mangano FT, Stottmann RW, Goto J. 2018. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development. 145:1.
  • Alsaadi MM, Erzurumluoglu AM, Rodriguez S, Guthrie PA, Gaunt TR, Omar HZ, Mubarak M, Alharbi KK, Al-Rikabi AC, Day IN. 2014. Nonsense mutation in coiled-coil domain containing 151 gene (CCDC151) causes primary ciliary dyskinesia. Hum Mutat. 35(12):1446–1448.
  • Amer MK, Mostafa RM, Fathy A, Saad HM, Mostafa T. 2015. Ropporin gene expression in infertile asthenozoospermic men with varicocele before and after repair. Urology. 85(4):805–808.
  • Antony D, Becker-Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, Wilson R, Taylor-Cox T, Dewar A, Jackson C, et al. 2013. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat. 34(3):462–472.
  • Baccetti B, Collodel G, Estenoz M, Manca D, Moretti E, Piomboni P. 2005. Gene deletions in an infertile man with sperm fibrous sheath dysplasia. Hum Reprod. 20(10):2790–2794.
  • Blanchon S, Legendre M, Copin B, Duquesnoy P, Montantin G, Kott E, Dastot F, Jeanson L, Cachanado M, Rousseau A, et al. 2012. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J Med Genet. 49(6):410–416.
  • Bower R, Tritschler D, Mills KV, Heuser T, Nicastro D, Porter ME. 2018. DRC2/CCDC65 is a central hub for assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol Biol Cell. 29(2):137–153.
  • Burkhard P, Stetefeld J, Strelkov SV. 2001. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11(2):82–88.
  • Chemes HE, Olmedo SB, Carrere C, Oses R, Carizza C, Leisner M, Blaquier J. 1998. Ultrastructural pathology of the sperm flagellum: association between flagellar pathology and fertility prognosis in severely asthenozoospermic men. Hum Reprod. 13(9):2521–2526.
  • Collodel G, Federico MG, Pascarelli NA, Geminiani M, Renieri T, Moretti E. 2011. A case of severe asthenozoospermia: a novel sperm tail defect of possible genetic origin identified by electron microscopy and immunocytochemistry. Fertil Steril. 95(1):289 e211–286.
  • Coutton C, Martinez G, Kherraf ZE, Amiri-Yekta A, Boguenet M, Saut A, He X, Zhang F, Cristou-Kent M, Escoffier J, et al. 2019. Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am J Hum Genet. 104(2):331–340.
  • Dimitrov DG, Urbanek V, Zverina J, Madar J, Nouza K, Kinsky R. 1994. Correlation of asthenozoospermia with increased antisperm cell-mediated immunity in men from infertile couples. J Reprod Immunol. 27(1):3–12.
  • Dirami T, Rode B, Jollivet M, Da Silva N, Escalier D, Gaitch N, Norez C, Tuffery P, Wolf JP, Becq F, et al. 2013. Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia. Am J Hum Genet. 92(5):760–766.
  • Geng Q, Ni L, Ouyang B, Hu Y, Zhao Y, Guo J. 2016. A novel testis-specific gene, Ccdc136, Is required for acrosome formation and fertilization in mice. Reprod Sci. 23(10):1387–1396.
  • Gopalkrishnan K, Padwal V, D’Souza S, Shah R. 1995. Severe asthenozoospermia: a structural and functional study. Int J Androl. 18(1):67–74.
  • Harrison RF. 1978. Significance of sperm antibodies in human fertility. Int J Fertil. 23(4):288–293.
  • Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP, Morante NF, et al. 2014. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet. 95(3):257–274.
  • Horani A, Brody SL, Ferkol TW, Shoseyov D, Wasserman MG, Ta-shma A, Wilson KS, Bayly PV, Amirav I, Cohen-Cymberknoh M, et al. 2013. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 8(8):e72299.
  • Khosronezhad N, Colagar AH, Jorsarayi SG. 2015. T26248G-transversion mutation in exon7 of the putative methyltransferase Nsun7 gene causes a change in protein folding associated with reduced sperm motility in asthenospermic men. Reprod Fertil Dev. 27(3):471–480.
  • King SM, Patel-King RS. 2015. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules. J Biol Chem. 290(12):7388–7401.
  • Knowles MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, Hazucha MJ, Yin W, Berg JS, Davis SD, Dell SD, et al. 2013. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 92(1):99–106.
  • Li P, He Y, Cai G, Xiao F, Yang J, Li Q, Chen X. 2019. CCDC114 is mutated in patient with a complex phenotype combining primary ciliary dyskinesia, sensorineural deafness, and renal disease. J Hum Genet. 64(1):39–48.
  • Li YS, Feng XX, Ji XF, Wang QX, Gao XM, Yang XF, Pan ZH, Sun L, Ma K. 2011. Expression of SEPT4 protein in the ejaculated sperm of idiopathic asthenozoospermic men. Zhonghua Nan Ke Xue. 17(8):699–702.
  • Lores P, Coutton C, El Khouri E, Stouvenel L, Givelet M, Thomas L, Rode B, Schmitt A, Louis B, Sakheli Z, et al. 2018. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet. 27(7):1196–1211.
  • Marchini M, Losa G, Falcone L, Piffaretti-Yanez A, Zeeb M, Balerna M. 1991. Etiology of severe asthenozoospermia and fertility prognosis. A screening of 5216 semen analyses. Andrologia. 23(2):115–120.
  • McEvoy M. 1997. The role of the CCDC. Br J Hosp Med. 58(6):288.
  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research. 20(9):1297–1303, eng.
  • Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, Belmont J, Beydon N, Billen F, Clement A, et al. 2011. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 43(1):72–78.
  • Moretti E, Geminiani M, Terzuoli G, Renieri T, Pascarelli N, Collodel G. 2011. Two cases of sperm immotility: a mosaic of flagellar alterations related to dysplasia of the fibrous sheath and abnormalities of head-neck attachment. Fertil Steril. 95(5):1787 e1719–1723.
  • Morimoto A, Shibuya H, Zhu X, Kim J, Ishiguro K, Han M, Watanabe Y. 2012. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J Cell Biol. 198(2):165–172.
  • Mostafa T, Nabil N, Rashed L, Makeen K, El-Kasas MA, Mohamaed HA. 2018. Seminal SIRT1 expression in infertile oligoasthenoteratozoospermic men with varicocoele. Andrology. 6(2):301–305.
  • Mostafa T, Rashed L, Taymour M. 2016. Seminal cyclooxygenase relationship with oxidative stress in infertile oligoasthenoteratozoospermic men with varicocele. Andrologia. 48(2):137–142.
  • Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, Schmidts M, Petridi S, Dankert-Roelse JE, Haarman EG, et al. 2013. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 92(1):88–98.
  • Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, Pathak N, Austin-Tse C, Sheridan E, Schmidts M, et al. 2012. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 44(6):714–719.
  • Schwarz T, Prieler B, Schmid JA, Grzmil P, Neesen J. 2017. Ccdc181 is a microtubule-binding protein that interacts with Hook1 in haploid male germ cells and localizes to the sperm tail and motile cilia. Eur J Cell Biol. 96(3):276–288.
  • Sha Y, Yang X, Mei L, Ji Z, Wang X, Ding L, Li P, Yang S. 2017a. DNAH1 gene mutations and their potential association with dysplasia of the sperm fibrous sheath and infertility in the Han Chinese population. Fertil Steril. 107(6):1312–1318.e2.
  • Sha YW, Sha YK, Ji ZY, Mei LB, Ding L, Zhang Q, Qiu PP, Lin SB, Wang X, Li P, et al. 2018. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin Genet. 93(4):776–783.
  • Sha YW, Xu X, Mei LB, Li P, Su ZY, He XQ, Li L. 2017b. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene. 633:48–53.
  • Shibahara H, Shiraishi Y, Suzuki M. 2005. Diagnosis and treatment of immunologically infertile males with antisperm antibodies. Reprod Med Biol. 4(2):133–141.
  • Shoemark A, Moya E, Hirst RA, Patel MP, Robson EA, Hayward J, Scully J, Fassad MR, Lamb W, Schmidts M, et al. 2018. High prevalence of CCDC103 p.His154Pro mutation causing primary ciliary dyskinesia disrupts protein oligomerisation and is associated with normal diagnostic investigations. Thorax. 73(2):157–166.
  • Takasaki N, Tachibana K, Ogasawara S, Matsuzaki H, Hagiuda J, Ishikawa H, Mochida K, Inoue K, Ogonuki N, Ogura A, et al. 2014. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci U S A. 111(3):1120–1125.
  • Wang T, Yin Q, Ma X, Tong MH, Zhou Y. 2018. Ccdc87 is critical for sperm function and male fertility. Biol Reprod. 99(4):817–827.
  • Wilton LJ, Temple-Smith PD, de Kretser DM. 1992. Quantitative ultrastructural analysis of sperm tails reveals flagellar defects associated with persistent asthenozoospermia. Hum Reprod. 7(4):510–516.
  • Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, Loges NT, Pennekamp P, Lindberg S, Stenram U, et al. 2013. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 45(3):262–268.
  • Wu DH, Singaraja RR. 2013. Loss-of-function mutations in CCDC114 cause primary ciliary dyskinesia. Clin Genet. 83(6):526–527.
  • Xu X, Sha YW, Mei LB, Ji ZY, Qiu PP, Ji H, Li P, Wang T, Li L. 2018. A familial study of twins with severe asthenozoospermia identified a homozygous SPAG17 mutation by whole-exome sequencing. Clin Genet. 93(2):345–349.
  • Yamaguchi A, Kaneko T, Inai T, Iida H. 2014. Molecular cloning and subcellular localization of Tektin2-binding protein 1 (Ccdc 172) in rat spermatozoa. J Histochem Cytochem. 62(4):286–297.
  • Zhang W, Li D, Wei S, Guo T, Wang J, Luo H, Yang Y, Tan Z 2019. Whole-exome sequencing identifies a novel CCDC151 mutation, c.325G>T (p.E109X), in a patient with primary ciliary dyskinesia and situs inversus. Hum Genet J. 64(3):249–252.
  • Zhang Y, Malekpour M, Al-Madani N, Kahrizi K, Zanganeh M, Lohr NJ, Mohseni M, Mojahedi F, Daneshi A, Najmabadi H, et al. 2007. Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. J Med Genet. 44(4):233–240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.