1,575
Views
0
CrossRef citations to date
0
Altmetric
Integrative approaches to the environmental and socio-economic SDGs

Investigating biodiversity trends in different mitigation scenarios with a national integrated assessment model

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2239323 | Received 31 Dec 2021, Accepted 10 Jun 2023, Published online: 04 Aug 2023

References

  • Akçakaya HR, Pereira HM, Canziani CG, Mbow A, Mori A, Palomo MG, Soberón J, Thuiller W, Yachi S. 2016. Improving the rigour and usefulness of scenarios and models through ongoing evaluation and refinement. In: Ferrier S, Ninan KN, Leadley P, Alkemade R, Acosta LA, Akçakaya HR, Brotons L, Cheung WWL, Christensen V, Harhash KA, KabuboMariara J, Lundquist C, Obersteiner M, Pereira HM, Peterson G, Pichs-Madruga R, Ravindranath N, Rondinini C, and Wintle BA editors. The methodological assessment report on scenarios and models of biodiversity and ecosystem services. Secretariat of the Intergovernmental Science. Secretariat of the Intergovernmental SciencePolicy Platform for Biodiversity and Ecosystem Services Bonn, Germany: IPBES. p. 348.
  • Angelkorte GB 2019. Modelagem do Setor Agropecuário Dentro de Modelo de Análise Integrada Brasileiro. UFRJ,[s. l.]. http://www.ppe.ufrj.br/images/publicações/mestrado/DISSERTAÇÃO_-_GERD_ANGELKORTE_Versão_FINAL.pdf.
  • Aragão LEOC, Anderson LO, Fonseca MG, Rosan TM, Vedovato LB, Wagner FH, Silva CVJ, Silva Junior CHL, Arai E, Aguiar AP, et al. 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat Commun. 9(1):536. doi:10.1038/s41467-017-02771-y.
  • Arantes A, Couto V, Sano E, Ferreira L. 2018. Livestock intensification potential in Brazil based on agricultural census and satellite data analysis. Pesq Agropec Bras. 53(9):1053–28. doi:10.1590/S0100-204X2018000900009.
  • Atkinson J, Brudvig LA, Mallen‐Cooper M, Nakagawa S, Moles AT, Bonser SP, Crowther TTerrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: A global meta‐analysisEcol Lett20222022 Jul; 252571725–1737. doi:10.1111/ele.14025
  • Audino LD, Louzada J, Comita L. 2014. Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity? Biol Conserv. 169:248–257. doi:10.1016/j.biocon.2013.11.023.
  • Barbosa LG, Alves MAS, Grelle CEV. 2021. Actions against sustainability: Dismantling of the environmental policies in Brazil. Land Use Policy. 104:105384. doi:10.1016/j.landusepol.2021.105384.
  • Barlow J, Gardner TA, Araujo IS, Ávila-Pires TC, Bonaldo AB, Costa JE, Peres CA, Ferreira LV, Hawes J, Hernandez MIM. 2007. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci USA. 104(47):18555–18560. doi:10.1073/pnas.0703333104.
  • Bauer N, Rose SK, Fujimori S, van Vuuren DP, Weyant J, Wise M, Cui Y, Daioglou V, Gidden MJ, Kato E, et al. 2018. Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Clim Change. 163(3):1553–1568. doi:10.1007/s10584-018-2226-y.
  • Bekessy SA, Wintle BA, Lindenmayer DB, Mccarthy MA, Colyvan M, Burgman MA, Possingham HP. 2010. The biodiversity bank cannot be a lending bank. Conserv Lett. 3(3):151–158. doi:10.1111/j.1755-263X.2010.00110.x.
  • Bellard C, Bertelsmeier C, Leadley P, Thruiller W, Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecol Lett. 15(4):365–377. doi:10.1111/j.1461-0248.2011.01736.x.
  • Biggs R, Simons H, Bakkenes M, Scholes RJ, Eickhout B, van Vuuren D, Alkemade R. 2008. Scenarios of biodiversity loss in southern Africa in the 21st century. Glob Environ Chang. 18:296–309. doi:10.1016/j.gloenvcha.2008.02.001.
  • Brandon K, Da Fonseca GA, Rylands AB, Da Silva JMC. 2005. Special section: Brazilian Conservation: challenges and opportunities. Conserv Biol. 19(3):595–600. doi:10.1111/j.1523-1739.2005.00710.x.
  • Brazil. 2009. Law Nº 12.187, [accessed 2009 December 29]. http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/l12187.htm
  • Brazil. 2010. Decree Nº 6527, [accessed 2010 August 1]. http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2008/Decreto/D6527.htm
  • Brazil. 2022. Nationally Determined Contribution. Jul 2023. https://unfccc.int/sites/default/files/NDC/2022-06/Updated%20-%20First%20NDC%20-%20%20FINAL%20-%20PDF.pdf
  • Brazil. 2022. Federative Republic of Nationally Determined Contribution. Available at: https://unfccc.int/sites/default/files/NDC/2022-06/Updated%20-%20First%20NDC%20-%20%20FINAL%20-%20PDF.pdf.
  • Butler RA 2016. The top 10 most biodiverse countries. In https://rainforests.mongabay.com/03highest_biodiversity.htmhttps://news.mongabay.com/2016/05/top-10-biodiverse-countries/amp/?print. Access: Dec 2021]. https://rainforests.mongabay.com/03highest_biodiversity.htmhttps://news.mongabay.com/2016/05/top-10-biodiverse-countries/amp/?print
  • CBD. 2021. Parties to the nagoya protocol. https://www.cbd.int/abs/nagoya-protocol/signatories/
  • CBD. 2022. Brazil- main details. https://www.cbd.int/countries/profile/?country=br#facts
  • Chrysafi A. 2022. Quantifying Earth system interactions for sustainable food production via expert elicitation. Nat Sustain. 5(10):830–842. doi:10.1038/s41893-022-00940-6.
  • Cunha B, Garrafa R, Gurgel A 2020. TEA model documentation. Working Paper 520. FGV AGRO Nº 001. Available at: https://bibliotecadigital.fgv.br/dspace;handle/bitstream/handle/10438/28756/TD/20520/20-/20FGVAGRO.pdf?sequence=1
  • Davis M, Faurby S, Svenning JC. 2018. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc Natl Acad Sci. 115(44):11262–11267. doi:10.1073/pnas.1804906115.
  • den Elzen M. 2022. Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach. Mitig Adapt Strateg Glob Change. 27(5). doi:10.1007/s11027-022-10008-7.
  • De Palma A, Hoskins A, Gonzalez RE, Börger L, Newbold T, Sanchez-Ortiz K, Ferrier S, Purvis A. 2021. Annual changes in the biodiversity intactness index in tropical and subtropical forest biomes, 2001–2012. Sci Rep. 11(1):20249. doi:10.1038/s41598-021-98811-1.
  • Di Marco M, Venter O, Possingham HP, Watson JE. 2018. Changes in human footprint drive changes in species extinction risk. Nat Commun. 9(1):1–9. doi:10.1038/s41467-018-07049-5.
  • Eitelberg DA, van Vliet J, Doelman JC, Stehfest E, Verburg PH. 2016. Demand for biodiversity protection and carbon storage as drivers of global land change scenarios, Glob. Environ Chang. 40:101e111. doi:10.1016/j.gloenvcha.2016.06.014.
  • Fajardo A, McIntire EJB, Olson ME. 2019. When short stature is an asset in trees. Trends Ecol Evol. 34(3):193–199. doi:10.1016/j.tree.2018.10.011.
  • Faleiro FAMV, Loyola RD. 2013. Socioeconomic and political trade-offs in biodiversity conservation: a case study of the cerrado biodiversity hotspot, Brazil. Diversity Distrib. 19(8):977–987. doi:10.1111/ddi.12072.
  • Ferrante L, Fearnside PM. 2020. The Amazon: biofuels plan will drive deforestation. Nature. 577(7789):170–170. doi:10.1038/d41586-020-00005-8.
  • Fischer G, Nachtergaele FO, van Velthuizen HT, Chiozza F, Franceschini G, Henry M, Muchoney D, Tramberend S 2021. Global Agro-Ecological Zones v4 – Model documentation. Rome, Italy: FAO. p. 286. 78-92-5-134426-2. doi:10.4060/cb4744en.
  • Fonseca CR, Venticinque EM. 2018. Biodiversity conservation gaps in Brazil: A role for systematic conservation planning. Perspect Ecol Conserv. 16(2):61–67. doi:10.1016/j.pecon.2018.03.001.
  • Frank S, Gusti M, Havlik P, Lauri P, DiFulvio F, Forsell N, Hasegawa T, Krisztin T, Palazzo A, Valin H. 2021. Land-based climate change mitigation potentials within the agenda for sustainable development. Environ Res Lett. 16(2):024006. doi:10.1088/1748-9326/abc58a.
  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Sodhi NS, Bradshaw CJA, Laurance WF, Lovejoy TE. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature. 478(7369):378–381. doi:10.1038/nature10425.
  • Gotelli NJ, Colwell RK. 2011. Estimating species richness. Biological Diversity: Frontiers In Measurement And Assessment. 12(39–54):35.
  • Graham CH, Hijmans RJ. 2006. A comparison of methods for mapping species ranges and species richness. Global Ecol Biogeogr. 15(6):578–587. doi:10.1111/j.1466-8238.2006.00257.x.
  • Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, Fargione J, Shoch D, Siikamäki JV, Smith P. 2017. Natural climate solutions. Proc Natl Acad Sci USA. 114(44):11645–11650. doi:10.1073/pnas.1710465114.
  • Haines-Young R. 2009. Land use and biodiversity relationships. Land Use Policy. 26:S178–S186. doi:10.1016/j.landusepol.2009.08.009.
  • Harfoot M, Tittensor DP, Newbold T, McInerny G, Smith MJ, Scharlemann JPW. 2014. Integrated assessment models for ecologists: The present and the future. Global Ecol Biogeogr. 23(2):124–143. doi:10.1111/geb.12100.
  • Hasegawa T, Fujimori S, Frank S, Humpenöder F, Bertram C, Després J, Drouet L, Emmerling J, Gusti M, Harmsen M, et al. 2021. Land-based implications of early climate actions without global net-negative emissions. Nat Sustain. 4(12):1052–1059. doi:10.1038/s41893-021-00772-w.
  • Heck V, Gerten D, Lucht W, Popp A, 2018. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat Clim Chang. 8(2):151–155. doi:10.1038/s41558-017-0064-y.
  • Hernández-Morcillo M, Burgess P, Mirck J, Pantera A, Plieninger T. 2018. Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environ Science & Policy. 80:44–52. doi:10.1016/j.envsci.2017.11.013.
  • Hill SLL, Gonzalez R, Sanchez-Ortiz K, Caton E, Espinoza F, Newbold T, Tylianakis J, Scharlemann JPW, De Palma A, Purvis A. 2018. Worldwide impacts of past and projected future land-use change on local species richness and the biodiversity intactness index. bioRxiv. doi:10.1101/311787.
  • Hill S, Harfoot M, Purvis A, Purves D, Collen B, Newbold T, Burgess ND, Mace GM. 2016. Reconciling biodiversity indicators to guide understanding and action. Conserv Lett. 9(6):405–412. doi:10.1111/conl.12291.
  • Houghton RA. 2005. Tropical deforestation as a source of greenhouse gas emissions. In: Moutinho P Schwartzman S, editors Tropical Deforestation and climate change. Belém, Brazil: Instituto de Pesquisa Ambiental da Amazonia; pp. 13–21.
  • Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, Phillips HRP, Alhusseini TI, Bedford FE, Bennett DJ, et al. 2017. The database of the PREDICTS (projecting responses of ecological diversity in changing terrestrial systems) project. Ecol Evol. 7(1):145–188. doi:10.1002/ece3.2579.
  • Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, Phillips HRP, Senior RA, Bennett DJ, Booth H, et al. 2014. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol Evol. 4(24):4701–4735. doi:10.1002/ece3.1303.
  • IAMC wiki. 2020. Model documentation - COFFEE-TEA. https://www.iamcdocumentation.eu/index.php/Model_Documentation_-_COFFEE-TEA
  • IAMC wiki. 2021. Model documentation - BLUES. https://www.iamcdocumentation.eu/index.php/Model_Documentation_-_BLUES
  • Império MMTS 2020. Atmospheric pollution and global climate change nexus in an integrated assessment model for Brazil. Universidade Federal do Rio de Janeiro. http://www.ppe.ufrj.br/images/publica%C3%A7%C3%B5es/doutorado/Tese_MarianaImp%C3%A9rio.pdf
  • Instituto Chico Mendes de Conservação da Biodiversidade. ICMBio. Accessed 10 Jun 2022 https://www.icmbio.gov.br/portal/faunabrasileira
  • IPBES. 2019. Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services (Version 1). Zenodo. doi:10.5281/zenodo.5657041.
  • IPCC 2022. Annex III: scenarios and modelling methods. In: Guivarch C, Kriegler E, Portugal-Pereira J, Bosetti V, Edmonds J, Fischedick M, Havlík P, Jaramillo P, Krey V, Lecocq F, Lucena A, Meinshausen M, Mirasgedis S, O’Neill B, Peters GP, Rogelj J, Rose S, Saheb Y, Strbac G, Strømman AH, van Vuuren DP, Zhou N (editors)]. In IPCC, 2022: climate change 2022: mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change [Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley Jeditors. Cambridge University Press:Cambridge, UK and New York, NY, USA; doi:10.1017/9781009157926.022.
  • Jardim Botânico do Rio de Janeiro (JBRJ). Flora e Funga do Brasil. [Accessed 2022 Jun 10]. http://floradobrasil.jbrj.gov.br/
  • Jenkins CN, Alves MAS, Uezu A, Vale MM, Stow A. 2015. Patterns of vertebrate diversity and protection in Brazil. PLoS One. 10(12):e0145064. https://biodiversitymapping.org/. doi:10.1371/journal.pone.0145064.
  • Kemppinen KM, Collins PM, Hole DG, Wolf C, Ripple WJ, Gerber LR. 2020. Global reforestation and biodiversity conservation. Conserv Biol. 34(5):1221–1228. doi:10.1111/cobi.13478.
  • Kim H, Rosa I, Alkemade R, Leadley P, Hurtt G, Popp A, Pereira HM, Anthoni P, Arneth A, Baisero D. 2018. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonised land-use and climate scenarios. Geosci Model Dev. 11(11):4537–4562. doi:10.5194/gmd-11-4537-2018.
  • Köberle A. 2018. Implementation of land use in an energy system model to study the long-term impacts of bioenergy in Brazil and its sensitivity to the choice of agricultural greenhouse gas emission factors. Universidade Federal do Rio de Janeiro. http://www.ppe.ufrj.br/index.php/pt/publicacoes/teses-e-dissertacoes/2018/130-implementation-of-land-use-in-an-energy-system-model-to-study-the-long-term-impacts-of-bioenergy-in-brazil-and-its-sensitivity-to-the-choice-of-agricultural-greenhouse-gas-emission-factors
  • Köberle AC, Daioglou V, Rochedo P, Lucena AFP, Szklo A, Fujimori S, Brunelle T, Kato E, Kitous A, van Vuuren DP, et al. 2022. Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil. Clim Change. 170(1–2):2. doi:10.1007/s10584-021-03236-4.
  • Köberle AC, Rochedo PRR, Lucena AFP, Szklo A, Schaeffer R. 2020. Brazil’s emission trajectories in a well-below 2 °C world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system. Clim Change. 162(4):1823–1842. doi:10.1007/s10584-020-02856-6.
  • Krogh A 2021. State of the tropical rainforest, 2021. Rainforest Foundation Norway. [Accessed 2021 12 22]. https://d5i6is0eze552.cloudfront.net/documents/Publikasjoner/Andre-rapporter/RF_StateOfTheRainforest_2020.pdf?mtime=20210505115205
  • Laurance WF. 2013. Emerging Threats to Tropical Forests. In: Lowman M, Devy S Ganesh T, editors. Treetops at Risk. New York, NY: Springer New York; pp. 71–79. doi:10.1007/978-1-4614-7161-5_5.
  • Leclère D, Obersteiner M, Barrett M, Butchart SH, Chaudhary A, De Palma A, Young L, Di Marco M, Doelman JC, Dürauer M. 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature. 585(7826):551–556. doi:10.1038/s41586-020-2705-y.
  • Lewis SL, Maslin MA. 2015. Defining the Anthropocene. Nature. 519(7542):171–180. doi:10.1038/nature14258.
  • Lucena AF, Hejazi M, Vasquez-Arroyo E, Turner S, Köberle AC, Daenzer K, van der Zwaan B, Kober T, Cai Y, Beach RH. 2018. Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil. Energy. 164:1161–1177. doi:10.1016/j.energy.2018.09.005.
  • Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Zimmerman JK, Andrade A, Baltzer J, Becker KML. 2018. Global importance of large‐diameter trees. Global Ecol Biogeogr. 27(7):849–864. doi:10.1111/geb.12747.
  • Mace GM, Barrett M, Burgess ND, Cornell SE, Freeman R, Grooten M, Purvis A. 2018. Aiming higher to bend the curve of biodiversity loss. Nat Sustain. 1(9):448–451. doi:10.1038/s41893-018-0130-0.
  • Mahecha MD, Bastos A, Bohn FJ, Eisenhauer N, Feilhauer H, Hartmann H, Wirth C, Kalesse-Los H, Migliavacca M, Otto FEL. 2022. Biodiversity loss and climate extremes—study the feedbacks. Nature. 612(7938):30–32. doi:10.1038/d41586-022-04152-y.
  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, E Nobre CA. 2008. Climate Change, deforestation, and the fate of the Amazon. Science. 319(5860):169–172. doi:10.1126/science.1146961.
  • Martin PA, Green RE, Balmford A. 2019. The biodiversity intactness index may underestimate losses. Nat Ecol Evol. 3(6):862–863. doi:10.1038/s41559-019-0895-1.
  • Maxwell SL, Evans T, Watson JEM, Morel A, Grantham H, Duncan A, Harris N, Potapov P, Runting RK, Venter O, et al. 2019. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci Adv. 5(10):eaax254. doi:10.1126/sciadv.aax2546.
  • Ministerio da Agricultura, Pecuaria e Abastecimento – MAPA. 2021. Plano setorial para adaptacao a mudanca do clima e baixa emissao de carbono na agropecuaria com vistas ao desenvolvimento sustentavel (2020-2030) : visao estrategica para um novo ciclo/Secretaria de Inovacao, Desenvolvimento Rural e Irrigacao. Brasilia: MAPA. https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/abc-portugues.pdf
  • Mishra A, Humpenöder F, Churkina G, Reyer CPO, Beier F, Bodirsky BL, Schellnhuber HJ, Lotze-Campen H, Popp A. 2022. Land use change and carbon emissions of a transformation to timber cities. Nat Commun. 13(1):4889. doi:10.1038/s41467-022-32244-w.
  • Mittermeier RA, Robles Gil P, Mittermeier CG. 1997. Megadiversity. Mexico: CEMEX.
  • MMA, 2018. https://www.gov.br/mma/pt-br/assuntos/servicosambientais/ecossistemas-1/conservacao-1/areas-prioritarias/2a-atualizacao-das-areas-prioritarias-para-conservacao-da-biodiversidade-2018
  • Müller-Casseres E, Carvalho F, Nogueira T, Fonte C, Império M, Poggio M, Schaeffer R, Portugal-Pereira J, Rochedo PRR, Szklo A. 2021. Production of alternative marine fuels in Brazil: An integrated assessment perspective. Energy. 219:119444. doi:10.1016/j.energy.2020.119444.
  • Newbold T. 2018. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc R Soc B. 285(1881):20180792. doi:10.1098/rspb.2018.0792.
  • Newbold T, Hudson L, Arnell A, Contu S. 2016. Global map of the Biodiversity Intactness Index, from Newbold et al. (2016) Science [Data set]. Nat Hist Mus Retrieved: 20:00 13 Dec 2021 (GMT). doi:10.5519/0009936.
  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Purvis A, Hoskins AJ, Lysenko I, Phillips HRP. 2016. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science. 353(6296):288–291. doi:10.1126/science.aaf2201.
  • Newbold T, Hudson LN, Hill S, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature. 520(7545):45–50. doi:10.1038/nature14324.
  • Newbold T, Sanchez-Ortiz K, De Palma A, Hill SL, Purvis A. 2019. Reply to ‘The biodiversity intactness index may underestimate losses’. Nat Ecol Evol. 3(6):864–865. doi:10.1038/s41559-019-0896-0.
  • Ohashi H, Hasegawa T, Hirata A, Fujimori S, Takahashi K, Tsuyama I, Nakao K, Kominami Y, Tanaka N, Hijioka Y, et al. 2019. Biodiversity can benefit from climate stabilisation despite adverse side effects of land-based mitigation. Nat Commun. 10(1):5240. doi:10.1038/s41467-019-13241-y.
  • Oliveira CCN, Angelkorte G, Rochedo PRR, Szklo A. 2020. The role of biomaterials for the energy transition from the lens of a national integrated assessment model. Clim Change. 167(3–4):57. doi:10.1007/s10584-021-03201-1.
  • Oliver TH, Morecroft MD. 2014. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdiscip Rev Clim Change. 5(3):317–335. doi:10.1002/wcc.271.
  • Pereira HM, Navarro LM, Martins IS. 2012. Global biodiversity change: the bad, the good, and the unknown. Annu Rev Environ Resour. 37(1):25–50. doi:10.1146/annurev-environ-042911-093511.
  • Pievani T. 2014. The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rend Fis Acc Lincei. 25(1):85–93. doi:10.1007/s12210-013-0258-9.
  • Pörtner HO, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes D, Burrows M, Chan L, Cheung WL, et al. 2021. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change; IPBES and IPCC. doi:10.5281/zenodo.4659158.
  • Portugal-Pereira J, Köberle AC, Soria R, Lucena AFP, Szklo A, Schaeffer, R. 2016. Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story. Energy. 115:1424–1435. doi:10.1016/j.energy.2016.03.062.
  • Purvis A, Newbold T, De Palma A, Contu S, Hill SLL, Sanchez-Ortiz K, Phillips HRP, Hudson LN, Lysenko I, Borger L, et al. 2018. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: The PREDICTS Project. Adv Ecol Res. 58:201–241. doi:10.1016/bs.aecr.2017.12.003.
  • Riahi K, Schaeffer R, Arango J, Calvin K, Guivarch C, Hasegawa T, Jiang K, Kriegler E, Matthews R, Peters GP, et al. 2022. Mitigation pathways compatible with long-term goals. In IPCC, 2022: climate Change 2022: mitigation of Climate Change. In: Shukla PR, Skea J, Slade R, Khourdajie AA, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S Malley J, editors. Contribution of working group III to the Sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, NY, USA: Cambridge University Press. doi:10.1017/9781009157926.005.
  • Rochedo PRR, Soares-Filho B, Schaeffer R, Viola E, Szklo A, Lucena AFP, Koberle A, Davis JL, Rajão R, Rathmann R, et al. 2018. The threat of political bargaining to climate mitigation in Brazil. Nature Clim Change. 8(8):695–698. doi:10.1038/s41558-018-0213-y.
  • Rouget M, Cowling RM, Vlok JAN, Thompson M, Balmford A. 2006. Getting the biodiversity intactness index right: the importance of habitat degradation data. Glob Chang Biol. 12(11):2032–2036. doi:10.1111/j.1365-2486.2006.01238.x.
  • Rozendaal DM, Bongers F, Aide TM, Alvarez-Dávila E, Ascarrunz N, Balvanera P, Poorter L, Bentos TV, Brancalion PHS, Cabral GAL. 2019. Biodiversity recovery of Neotropical secondary forests. Sci Adv. 5(3):eaau3114. doi:10.1126/sciadv.aau3114.
  • Runting RK, Griscom BW, Struebig MJ, Satar M, Meijaard E, Burivalova Z, Cheyne SM, Deere NJ, Game ET, et al. 2019. Larger gains from improved management over sparing–sharing for tropical forests. Nat Sustain. 2(1):53–61. doi:10.1038/s41893-018-0203-0.
  • Sanchez-Ortiz K, Gonzalez R, De Palma A, Newbold T, Hill SLL, Tylianakis J, Borger L, Lysenko I, Purvis A. 2019. Land-use and related pressures have reduced biotic integrity more on islands than on mainlands. bioRxiv. doi:10.1101/576546.
  • Schipper AM, Hilbers JP, Meijer JR, Antão LH, Benítez-López A, de Jonge MJM, Leemans LH, Scheper E, Alkemade R, Doelman JC, et al. 2020. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob Chang Biol. 26(2):760–771. doi:10.1111/gcb.14848.
  • Scholes R, Biggs R. 2005. A Biodiversity Intactness Index. Nature. 434(7029):45–49. doi:10.1038/nature03289.
  • Seddon N, Turner B, Berry P, Chausson A, Girardin CAJ. 2019. Grounding nature-based climate solutions in sound biodiversity Science. Nat Clim Chang. 9(2):84–87. doi:10.1038/s41558-019-0405-0.
  • SEEG - Greenhouse gas emissions and removal estimation system, climate observatory, [accessed Nov 2022]. http://seeg.eco.br
  • Seymour F, Busch J. 2016. Why forests? Why now?: the science, economics, and politics of tropical forests and climate change. Washington, D.C: Brookings Institution Press. 978-1-933286-85-3.
  • Smith P, Nkem J, Calvin K, Campbell D, Cherubini F, Grassi G, Korotkov V, Hoang AL, Lwasa S, McElwee P, et al. 2019. Interlinkages between desertification, land degradation, food security and greenhouse gas fluxes: synergies, trade-offs and integrated response options. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Portner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, and Malley J, editors. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge: Cambridge University Press. p. 551–672. doi:10.1017/9781009157988.008.
  • Soares-Filho B, Rajão R, Merry F, Rodrigues H, Davis J, Lima L, Macedo M, Coe M, Carneiro A, Santiago L, et al. 2016. Brazil’s market for trading forest certificates. PLoS One. 11(4):1–17. doi:10.1371/journal.pone.0152311.
  • Soergel B, Kriegler E, Weindl I, Rauner S, Dirnaichner A, Ruhe C, Hofmann M, Bauer N, Bertram C, Bodirsky BL, et al. 2021. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat Clim Chang. 11(8):656–664. doi:10.1038/s41558-021-01098-3.
  • Stehfest E, Van Vuuren DP, Bouwman L, Kram T, Alkemade R, Bakkenens M, Biemans H, Bouwman A, den Elzen MGJ, Janse J, et al. 2014. Integrated assessment of global environmental change with model description and policy applications IMAGE 3.0. The Hague: PBL Netherlands Environmental Assessment Agency. ISBN: 978-94-91506-71-0 .
  • Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Zavala MA, Lines ER, Morris WK, Rüger N. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature. 507(7490):90–93. doi:10.1038/nature12914.
  • Stevenson JR, Villoria N, Byerlee D, Kelley T, Maredia M. 2013. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc Natl Acad Sci. 110(21):8363–8368. doi:10.1073/pnas.1208065110.
  • Strassburg BB, Iribarrem A, Beyer HL, Cordeiro CL, Crouzeilles R, Jakovac CC, Visconti P, Lacerda E, Latawiec AE, Balmford A. 2020. Global priority areas for ecosystem restoration. Nature. 586(7831):724–729. doi:10.1038/s41586-020-2784-9.
  • Tagomori IS, Rochedo PR, Szklo A. 2019. Techno-economic and georeferenced analysis of forestry residues-based Fischer-Tropsch diesel with carbon capture in Brazil. Biomass Bioenergy. 123:134–148. doi:10.1016/j.biombioe.2019.02.018.
  • Titeux N, Henle K, Mihoub JB, Regos A, Geijzendorffer IR, Cramer W, Verburg PH, Brotons L. 2016. Biodiversity scenarios neglect future land‐use changes. Glob Chang Biol. 22(7):2505–2515. doi:10.1111/gcb.13272.
  • Turubanova S, Potapov P V, Tyukavina A , Hansen M C. 2018. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13(7):074028. doi:10.1088/1748-9326/aacd1c.
  • UNFCCC. 2016a. https://unfccc.int/node/180413
  • UNFCCC. 2016b. Nationally Determined Contributions (NDCs). https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-contributions-ndcs#eq-1 NDCs: https://www4.unfccc.int/sites/NDCStaging/pages/Party.aspx?party=BRAdata. Brazil First NDC (Archived, Updated submission and Updated submission-letter) in Country page: Brazil.
  • UNFCCC. 2023. Nationally Determined Contributions (NDCs). [Accessed Jul 2023]. https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs#eq-1
  • van Vuuren DP, Stehfest E, Gernaat D, Boer HS, Daioglou D, Doelman V, Edelenbosch J, Harmsen O, Zeist M, van den Berg W, et al. 2021. The 2021 SSP scenarios of the IMAGE 3.2 model. doi:10.31223/x5cg92.
  • Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Watson JE, Laurance WF, Wood P, Fekete BM. 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun. 7(1):1–11. doi:10.1038/ncomms12558.
  • Verburg PH, van Asselen S, van der Zanden EH, Stehfest E. 2013. The representation of landscapes in global scale assessments of environmental change. Landsc Ecol. 28(6):1067–1080. doi:10.1007/s10980-012-9745-0.
  • Vieira ICG, Toledo PD, Silva JD, Higuchi H. 2008. Deforestation and threats to the biodiversity of Amazonia. Braz J Biol. 68(4 suppl):949–956. doi:10.1590/S1519-69842008000500004.
  • Watson JE, Evans T, Venter O, Williams B, Tulloch A, Stewart C, Lindenmayer D, Ray JC, Murray K, Salazar A. 2018. The exceptional value of intact forest ecosystems. Nat Ecol Evol. 2(4):599–610. doi:10.1038/s41559-018-0490-x.
  • Weiss, DJ. 2017. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nat. 553(7688):333–336. doi:10.1038/nature25181.
  • West TA, Fearnside PM. 2021. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy. 100:105072. doi:10.1016/j.landusepol.2020.105072.
  • Weyant J. 2017. Some Contributions of Integrated Assessment Models of Global Climate Change. Stanford, CA: Department of Management Science and Engineering, Stanford University.