91
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of biochar on migration and biodegradation of 4-n-nonylphenol (NP) during river-based groundwater recharge with reclaimed water

, , , , &
Pages 29316-29327 | Received 29 Jan 2016, Accepted 12 Mar 2016, Published online: 04 Apr 2016

References

  • USEPA (United States Environmental Protection Agency), Testing consent order on 4-nonylphenol, branched. Fed. Regist. 35 (1990) 5991–5994.
  • A. Soares, B. Guieysse, B. Jefferson, E. Cartmell, J.N. Lester, Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters, Environ. Int. 34 (2008) 1033–1049.
  • Y.L. Luo, W.S. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ. 473–474 (2014) 619–641.10.1016/j.scitotenv.2013.12.065
  • Z. Li, M. Li, X. Liu, Y.P. Ma, M.M. Wu, Identification of priority organic compounds in groundwater recharge of China, Sci. Total Environ. 493 (2015) 481–486.
  • D. Calderón-Preciado, V. Matamoros, J.M. Bayona, Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network, Sci. Total Environ. 412–413 (2011) 14–19.10.1016/j.scitotenv.2011.09.057
  • V. Matamoros, V. Salvadó, Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants, Chemosphere 86 (2012) 111–117.10.1016/j.chemosphere.2011.09.020
  • J.H. Writer, J.N. Ryan, S.H. Keefe, L.B. Barber, Fate of 4-nonylphenol and 17β-estradiol in the Redwood River of Minnesota, Environ. Sci. Technol. 46 (2011) 860–868.
  • K.A. Langdon, M.S. Warne, R.J. Smernik, A. Shareef, R.S. Kookana, Degradation of 4-nonylphenol,4-t-octylphenol, bisphenol A and triclosan following biosolids addition to soil under laboratory conditions, Chemosphere 84 (2011) 1556–1562.10.1016/j.chemosphere.2011.05.053
  • J.Z. Li, J. Fu, X. Xiang, M.M. Wu, X. Liu, Kinetics, equilibrium and mechanisms of sorption and desorption of 17α-ethinyl estradiol in two natural soils and their organic fractions, Sci. Total Environ. 452–453 (2013) 404–410.10.1016/j.scitotenv.2013.03.009
  • Y.H. Fei, X.D. Li, X.Y. Li, Organic diagenesis in sediment and its impact on the adsorption of bisphenol A and nonylphenol onto marine sediment, Mar. Pollut. Bull. 63 (2011) 578–582.10.1016/j.marpolbul.2010.11.020
  • K. Sun, B. Gao, Z. Zhang, G. Zhang, X. Liu, Y. Zhao, B. Xing, Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments, Chemosphere 80 (2010) 709–715.10.1016/j.chemosphere.2010.05.028
  • L. Beesley, E. Moreno-Jiménez, J.L. Gomez-Eyles, E. Harris, B. Robinson, T. Sizmur, A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils, Environ. Pollut. 159 (2011) 3269–3282.10.1016/j.envpol.2011.07.023
  • L.P. Lou, L.D. Yao, G.H. Cheng, L.X. Wang, Y.F. He, B.L. Hu, Application of rice-straw biochar and microorganisms in nonylphenol remediation: Adsorption-biodegradation coupling relationship and mechanism, PLsS One 10(9) (2015) e0137467.10.1371/journal.pone.0137467
  • Z. Mao, X.F. Zheng, Y.Q. Zhang, X.X. Tao, Y. Li, W. Wang, Occurrence and biodegradation of nonylphenol in the environment, Int. J. Mol. Sci. 13 (2012) 491–505.10.3390/ijms13010491
  • C.W. Yang, H.W. Huang, B.V. Chang. Microbial communities associated with anaerobic degradation of polybrominated diphenyl ethers in river sediment, J. Microbiol. Immunol. Infect. 1–8 (2015), doi: 10.1016/j.jmii.2014.12.009.
  • Y. Yang, W. Hunter, S. Tao, D. Crowley, J. Gan, Effect of activated carbon on microbial bioavailability of phenanthrene in soils, Environ. Toxicol. Chem. 28 (2009) 2283–2288.10.1897/09-081.1
  • Y. Chai, R.J. Currie, J.W. Davis, M. Wilken, G.D. Martin, V.N. Fishman, U. Ghosh, Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils, Environ. Sci. Technol. 46 (2012) 1035–1043.10.1021/es2029697
  • B. Beckingham, U. Ghosh, Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments, Environ. Sci. Technol. 45 (2011) 10567–10574.10.1021/es202218p
  • S. Różalska, R. Szewczyk, J. Długoński, Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: A proposal of a metabolic pathway, J. Hazard. Mater. 180 (2010) 323–331.10.1016/j.jhazmat.2010.04.034
  • F.L. Gabriel, A. Heidlberger, D. Rentsch, W. Giger, K. Guenther, H.P.E. Kohler, A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga bayram, J Biol. Chem. 280 (2005) 15526–15533.
  • W.F. Ma, C. Nie, F.F. Su, X. Cheng, Y.L. Yan, B. Chen, X.X. Lun, Migration and biotransformation of three selected endocrine disrupting chemicals in different river-based aquifers media recharge with treated municipal wastewater, Int. Biodeterior. Biodegrad. 102 (2014) 298–307.
  • E. Lumini, A. Orgiazzi, R. Borriello, P. Bonfante, V. Bianciotto, Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach, Environ. Microbiol. 12 (2010) 2165–2179.
  • H.D. Chapman, Cation-exchange capacity, in: C.A. Black (Ed.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, American Society of Agronomy, Madison, WI, (1965) 891–901.
  • Ö. Gustafsson, F. Haghseta, C. Chan, J. MacFarlane, P.M. Gschwend, Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability, Environ. Sci. Technol. 31 (1997) 203–209.10.1021/es960317s
  • J.A. Peiffer, A. Spor, O. Koren, Z. Jin, S.G. Tringe, J.L. Dangl, E.S. Buckler, R.E. Ley, Diversity and heritability of the maize rhizosphere microbiome under field conditions, Proc. Natl. Acad. Sci. USA 110 (2013) 6548–6553.10.1073/pnas.1302837110
  • Y. Yang, W. Hunter, S. Tao, J. Gan, Effects of black carbon on pyrethroid availability in sediment, J. Agric. Food Chem. 57 (2009) 232–238.10.1021/jf8026759
  • M. Hess, A. Sczyrba, R. Egan, T.W. Kim, H. Chokhawala, Metagenomic discovery of biomass-degrading genes and genomes from cow rumen, Science 331(6016) (2011) 463–467.10.1126/science.1200387
  • C.W. Luo, D. Tsementzi, N. Kyrpides, T. Read, K.T. Konstantinidis, Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample, PLoS One 7(2) (2012) e30087.10.1371/journal.pone.0030087
  • J.Z. Li, J. Fu, H.L. Zhang, Z. Li, Y.P. Ma, M.M. Wu, X. Liu, Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: A field study along the Chaobai River, Beijing, Sci. Total Environ. 450–451 (2013) 162–168.10.1016/j.scitotenv.2013.01.089
  • Z. Lu, J. Gan, Analysis, toxicity, occurrence and biodegradation of nonylphenol isomers: A review, Environ. Int. 73 (2014) 334–345.10.1016/j.envint.2014.08.017
  • Y.J. Feng, Z.H. Zhang, P. Gao, H. Su, Y.L. Yu, N.Q. Ren, Adsorption behavior of EE2 (17α-ethinylestradiol) onto the inactivated sewage sludge: Kinetics, thermodynamics and influence factors, J. Hazard. Mater. 175 (2010) 970–976.10.1016/j.jhazmat.2009.10.105
  • A. Mercier, G. Wille, C. Michel, J. Harris-Hellal, L. Amalric, C. Morlay, Biofilm formation vs. PCB adsorption on granular activated carbon in PCB-contaminated aquatic sediment, J. Soils Sediments 13 (2013) 793–800.10.1007/s11368-012-0647-1
  • G. Cheng, L. Zhu, M. Sun, J. Deng, H. Chen, X. Xu, Desorption and distribution of pentachlorophenol (PCP) on aged black carbon containing sediment, J. Soils Sediments 14 (2013) 344–352.
  • H.J. Cao, D.D. Han, M.Y. Li, X. Li, M.X. He, W.X. Wang, Theoretical investigation on mechanistic and kinetic transformation of 2,2′,4,4′,5-pentabromodiphenyl ether, J. Phys. Chem. A 119 (2015) 6404–6411.10.1021/acs.jpca.5b04022
  • P.F. Corvini, R. Meesters, M. Mundt, A. Schäffer, B. Schmidt, H.F. Schröder, W. Verstraete, R. Vinken, J. Hollender, Contribution to the detection and identification of oxidation metabolites of nonylphenol in Sphingomonas sp. strain TTNP3, Biodegradation 18 (2007) 233–245.10.1007/s10532-006-9058-6
  • H.P. Kohler, F.L.P. Gabriel, ipso-Substitution—A novel pathway for microbial metabolism of endocrine-disrupting 4-nonylphenols, 4-alkoxyphenols, and bisphenol A, CHIMIA Int. J. Chem. 62 (2008) 358–363.10.2533/chimia.2008.358
  • H. Tong, M. Hu, F.B. Li, C.S. Liu, M.J. Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil, Soil Biol. Biochem. 70 (2014) 142–150.
  • Q.Z. Zhang, F.A. Dijkstra, X.R. Liu, Y.D. Wang, J. Huang, N. Lu, Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain, PLoS One 9 (2014) e102062, doi: 10.1371/journal.pone.0102062.
  • S. Xia, R. Jia, F. Feng, K. Xie, H. Li, D. Jing, X. Xu, Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process, Bioresour. Technol. 106 (2012) 36–43.10.1016/j.biortech.2011.11.112
  • Z. Wang, Y.Y. Yang, W.M. Sun, S.G. Xie, Y. Liu, Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms, Ecotoxicol. Environ. Saf. 106 (2014) 1–5.10.1016/j.ecoenv.2014.04.019
  • Z. Wang, Y.Y. Yang, W.M. Sun, S.G. Xie, Biodegradation of nonylphenol by two alphaproteobacterial strains in liquid culture and sediment microcosm, Int. Biodeterior. Biodegrad. 92 (2014) 1–5.10.1016/j.ibiod.2014.04.004
  • B.V. Chang, C.L. Liu, S.Y. Yuan, C.Y. Cheng, W.H. Ding, Biodegradation of nonylphenol in mangrove sediment, Int. Biodeterior. Biodegrad. 61 (2008) 325–330.10.1016/j.ibiod.2007.10.004
  • T. Toyama, M. Murashita, K. Kobayashi, S. Kikuchi, K. Sei, Y. Tanaka, M. Ike, K. Mori, Acceleration of nonylphenol and 4-tertoctylphenoldegradation in sediment by Phragmites australis and associated rhizosphere bacteria, Environ. Sci. Technol. 45 (2011) 6524–6530.10.1021/es201061a
  • W.H. Luo, H.V. Phan, F.I. Hai, W.E. Price, W.S. Guo, H.H. Ngo, K. Yamamoto, L.D. Nghiem, Effects of salinity build-up on the performance and bacterial community structure of a membrane bioreactor, Bioresour. Technol. 200 (2016) 305–310.10.1016/j.biortech.2015.10.043
  • J. De Weert, M. Viñas, T. Grotenhuis, H. Rijnaarts, A. Langenhoff, Aerobic nonylphenol degradation and nitro-nonylphenol formation by microbial cultures from sediments, Appl. Microbiol. Biotechnol. 86 (2010) 761–771.10.1007/s00253-009-2394-9
  • Z. Wang, Y.Y. Yang, T. He, S.G. Xie, Change of microbial community structure and functional gene abundance in nonylphenol-degrading sediment, Appl. Microbiol. Biotechnol. 99 (2015) 3259–3268.10.1007/s00253-014-6222-5
  • O. Pornsunthorntawee, P. Wongpanit, S. Chavadej, M. Abe, R. Rujiravanit, Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil, Bioresour. Technol. 99 (2008) 1589–1595.10.1016/j.biortech.2007.04.020
  • R. Villemur, S.C.C. dos Santos, J. Ouellette, P. Juteau, F. Lepine, E. Deziel, Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures, Appl. Environ. Microbiol. 79 (2013) 4701–4711.10.1128/AEM.01239-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.