49
Views
6
CrossRef citations to date
0
Altmetric
Articles

Preparation, physicochemical, and electrochemical properties of magnetite electrodes for methanol electrocatalytic oxidation in an alkaline medium

, &
Pages 29404-29410 | Received 26 Oct 2015, Accepted 17 Jun 2016, Published online: 27 Jul 2016

References

  • S.H. Liu, W.Y. Yu, C.H. Chen, A.Y. Lo, B.J. Hwang, S.H. Chien, S.B. Liu, Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell, Chem. Mater. 20 (2008) 1622–1628.10.1021/cm702777j
  • J. Li, J. Ren, G. Yang, P. Wang, H. Li, X. Sun, L. Chen, J.T. Ma, R. Li, Simple and efficient deposition of Pd nanoparticles on Fe3O4 hollow nanospheres: A new catalytic system for methanol oxidation in alkaline media, Mater. Sci. Eng.: B 172 (2010) 207–212.10.1016/j.mseb.2010.05.019
  • C.D. Dong, C.W. Chen, C.F. Chen, C.M. Hung, Platinum particles supported on mesoporous carbons: Fabrication and electrocatalytic performance in methanol-tolerant oxygen-reduction reactions, Sci. Reports 4 (2014) 1–8.
  • K.H. Ye, S.A. Zhou, X.C. Zhu, C.W. Xu, P.K. Shen, Stability analysis of oxide (CeO2, NiO, Co3O4 and Mn3O4) effect on Pd/C for methanol oxidation in alkaline medium, Electrochim. Acta 90 (2013) 108–111.10.1016/j.electacta.2012.12.012
  • S. Lin, C. Shen, D. Lu, C. Wang, H.J. Gao, Synthesis of Pt nanoparticles anchored on graphene encapsulated Fe3O4 magnetic nanospheres and their use as catalysts for methanol oxidation, Carbon 53 (2013) 112–119.10.1016/j.carbon.2012.10.037
  • S. Guo, S. Zhang, D. Su, S. Sun, Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction, J. Am. Chem. Soc. 135 (2013) 13879–13884.10.1021/ja406091p
  • S. Guo, S. Zhang, X. Sun, S. Sun, Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction, J. Am. Chem. Soc. 133 (2011) 15354–15357.10.1021/ja207308b
  • H. Sun, J. You, M. Yang, F. Qu, Synthesis of Pt/Fe3O4–CeO2 catalyst with improved electrocatalytic activity for methanol oxidation, J. Power Sources 205 (2012) 231–234.10.1016/j.jpowsour.2012.01.014
  • D. Huang, Y. Luo, S. Li, M. Wang, Y. Shen, Hybrid of Fe@Fe3O4 core–shell nanoparticle and iron-nitrogen-doped carbon material as an efficient electrocatalyst for oxygen reduction reaction, Electrochim. Acta 174 (2015) 933–939.10.1016/j.electacta.2015.06.054
  • Y. Ma, H. Wang, J. Key, V. Linkov, S. Ji, X. Mao, Q. Wang, R. Wang, Ultrafine iron oxide nanoparticles supported on N-doped carbon black as an oxygen reduction reaction catalyst, Int. J. Hydrogen Energy 39 (2014) 14777–14782.10.1016/j.ijhydene.2014.07.108
  • N.M. Sánchez-Padilla, S.M. Montemayor, L.A. Torres, F.J. Rodríguez Varela, Fast synthesis and electrocatalytic activity of M@Pt (M = Ru, Fe3O4, Pd) core–shell nanostructures for the oxidation of ethanol and methanol, Int. J. Hydrogen Energy 38 (2013) 12681–12688.10.1016/j.ijhydene.2012.11.026
  • H. Yang, H. Wang, S. Ji, V. Linkov, R. Wang, Synergy between isolated-Fe3O4 nanoparticles and CNx layers derived from lysine to improve the catalytic activity for oxygen reduction reaction, Int. J. Hydrogen Energy 39 (2014) 3739–3745.10.1016/j.ijhydene.2013.12.160
  • K. Routray, W. Zhou, C.J. Kiely, I.E. Wachs, Catalysis science of methanol oxidation over iron vanadate catalysts: Nature of the catalytic active sites, ACS Catal. 1 (2011) 54–66.
  • N. Atar, T. Eren, M.L. Yola, H. Karimi-Maleh, B. Demirdögen, Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation, RSC Adv. 5 (2015) 26402–26409.10.1039/C5RA03735B
  • C.T. Wang, R.J. Willey, Oxidation of methanol over iron oxide based aerogels in supercritical CO2, J. Non-Cryst. Solids 225 (1998) 173–177.10.1016/S0022-3093(98)00040-4
  • H. Meng, Z. Zhang, F. Zhao, T. Qiu, J. Yang, Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation, Appl. Surf. Sci. 280 (2013) 679–685.10.1016/j.apsusc.2013.05.041
  • Y.C. Dong, R.G. Ma, M.J. Hu, H. Cheng, C.K. Tsang, Q.D. Yang, Y.Y. Li, J.A. Zapien, Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries, J. Solid State Chem. 201 (2013) 330–337.10.1016/j.jssc.2012.12.021
  • H. Yin, L. Cui, Q. Chen, W. Shi, S. Ai, L. Zhu, L. Lu, Amperometric determination of bisphenol A in milk using PAMAM–Fe3O4 modified glassy carbon electrode, Food Chem. 125 (2011) 1097–1103.10.1016/j.foodchem.2010.09.098
  • F. Vitse, M. Cooper, G.G. Botte, On the use of ammonia electrolysis for hydrogen production, J. Power Sources 142 (2005) 18–26.10.1016/j.jpowsour.2004.09.043
  • S.L. Vot, L. Roué, D. Bélanger, Study of the electrochemical oxidation of ammonia on platinum in alkaline solution: Effect of electrodeposition potential on the activity of platinum, J. Electroanal. Chem. 691 (2013) 18–27.10.1016/j.jelechem.2012.12.004
  • A. Ciszewski, Catalytic oxidation of methanol on a glassy carbon electrode electrochemically modified by a conductive NiII-curcumin film, Electroanalysis 7 (1995) 1132–1135.10.1002/(ISSN)1521-4109
  • A.B.P. Lever, The phthalocyanines—molecules of enduring value; a two-dimensional analysis of redox potentials, J. Porphyrins Phthalocyanines 3 (1999) 488–499.10.1002/(SICI)1099-1409(199908/10)3:6/7<488::AID-JPP167>3.0.CO;2-K
  • Y. Leng, W. Guo, X. Shi, Y. Li, A. Wang, F. Hao, L. Xing, Degradation of Rhodamine B by persulfate activated with Fe3O4: Effect of polyhydroquinone serving as an electron shuttle, Chem. Eng. J. 240 (2014) 338–343.10.1016/j.cej.2013.11.090
  • D.W. Kim, K.S. Kim, S.J. Park, Synthesis and electrochemical performance of polypyrrole-coated iron oxide/carbon nanotube composites, Carbon Lett. 13 (2012) 157–160.10.5714/CL.2012.13.3.157

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.