2,898
Views
6
CrossRef citations to date
0
Altmetric
Article

Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami

, , , , , , , & show all
Pages 28-51 | Received 24 May 2022, Accepted 09 Nov 2022, Published online: 07 Dec 2022

References

  • Aber JS, Marzolff I, Ries JB. 2010. Chapter 3 - photogrammetry. In: Aber JS, Marzolff I, Ries JB BT-S-FAP, editors. Amsterdam: Elsevier; p. 23–39.
  • Adriano B, Yokoya N, Xia J, Miura H, Liu W, Matsuoka M, Koshimura S. 2021. Learning from multimodal and multitemporal earth observation data for building damage mapping. ISPRS J Photogramm Remote Sens. 175:132–143.
  • Adriano B, Xia J, Baier G, Yokoya N, Koshimura S. 2019. Multi-source data fusion based on ensemble learning for rapid building damage mapping during the 2018 sulawesi earthquake and tsunami in Palu, Indonesia. Remote Sens. 11(7):886.
  • Adriano B, Mas E, Koshimura S, Estrada M, Jimenez C. 2014. Scenarios of earthquake and tsunami damage probability in Callao region, Peru using tsunami fragility functions. J. Disaster Res. 9(6):968–975.
  • Afida BA, Kamal M, Hadmoko DS. 2020. Identifikasi Kerusakan Bangunan Pasca Gempa Bumi Menggunakan Citra Satelit Worldview-2. JPK. 8(1):67–77.
  • Aggarwal S. 2004. Principles of remote sensing. Satell Remote Sens GIS Appl Agric Meteorol. 23(2):23–28.
  • Al-Abadi AM. 2018. Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arab J Geosci. 11(9):1–19.
  • Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens. 114:24–31.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Burrough PA, McDonnell RA, Lloyd CD. 2015. Principles of geographical information systems. United Kingdom: Oxford University Press.
  • Cartwright JHE, Nakamura H. 2008. Tsunami: a history of the term and of scientific understanding of the phenomenon in Japanese and Western culture. Notes Rec R Soc Lond. 62(2):151–166.
  • Cooner AJ, Shao Y, Campbell JB. 2016. Detection of urban damage using remote sensing and machine learning algorithms: revisiting the 2010 Haiti earthquake. Remote Sens. 8(10):868.
  • Copernicus 2019. Copernicus Emergency Management Service [Internet]. [accessed 2022 Apr 1]. https://emergency.copernicus.eu/mapping/ems/damage-assessment.
  • Corbett-Davies S, Goel S. 2018. The measure and mismeasure of fairness: a critical review of fair machine learning. arXiv Prepr arXiv180800023; New York: Cornell University; p. 1–25.
  • Cutler A, Cutler DR, Stevens JR. 2012. Random forests. In: ensemble Mach Learn. Boston, MA: Springer; p. 157–175.
  • DeFries R, Levin SABT-E of B (Second E 2013. Remote Sensing and Image Processing [Internet]. In:, editor. Waltham: academic Press; p. 389–399.
  • Department of Communications, Informatics P and SP 2022. Pandeglang One Data [Internet]. [accessed 2022 Apr 2]. https://satudata.pandeglangkab.go.id/index.php/kecamatan/detail/labuan.
  • Dong L, Shan J. 2013. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J Photogramm Remote Sens. [Internet]84:85–99.
  • Ebert JI. 2015. Photogrammetry, Photointerpretation, and Digital Imaging and Mapping in Environmental Forensics. Introd to Environ Forensics Third Ed. 39–64.
  • European Space Agency 2018. User Guides - Sentinel-2 MSI - Level-2A Product - Sentinel Online - Sentinel Online [Internet]. [accessed 2022 Apr 1]. https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a.
  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L. 2007. The shuttle radar topography mission. Rev Geophys. 45(2):1–33
  • Feng Q, Liu J, Gong J. 2015. UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 7(1):1074–1094.
  • Fernández-Delgado M, Cernadas E, Barro S, Amorim D. 2014. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 15(1):3133–3181.
  • Goshtasby AA, Nikolov SG. 2007. Guest editorial: image fusion: advances in the state of the art. Inf Fusion Spec Issue Image Fusion Adv State Art. 8:114–118.
  • Gupta R, Goodman B, Patel N, Hosfelt R, Sajeev S, Heim E, Doshi J, Lucas K, Choset H, Gaston M. 2019. Creating XBD: a dataset for assessing building damage from satellite imagery. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work. 2019-June: 10–17.
  • Hamzah L, Puspito NT, Imamura F. 2000. Tsunami Catalog and Zones in Indonesia. J Nat Disaster Sci. 22(1):25–43.
  • Hancilar U, Taucer F, Corbane C. 2013. Empirical fragility functions based on remote sensing and field data after the 12 January 2010 Haiti earthquake. Earthq Spectra. 29(4):1275–1310.
  • Hu Z, Shi T, Wang C, Li Q, Wu G. 2021. Scale-sets image classification with hierarchical sample enriching and automatic scale selection. Int J Appl Earth Obs Geoinf. 105:102605.
  • Kaur H, Koundal D, Kadyan V. 2021. Image fusion techniques: a survey. Arch Comput Methods Eng. 28(7):4425–4447.
  • Kedzierski M, Wierzbicki D, Sekrecka A, Fryskowska A, Walczykowski P, Siewert J. 2019. Influence of lower atmosphere on the radiometric quality of unmanned aerial vehicle imagery. Remote Sens. 11(10):1214.
  • Kerle N, Damen M. 2009. Guidance notes Session 2 : Obtaining spatial data for risk assessment. Guid B. 1–31.
  • Kerle N, Nex F, Gerke M, Duarte D, Vetrivel A. 2019. UAV-based structural damage mapping: a review. IJGI. 9(1):14–23.
  • Khodaverdizahraee N, Rastiveis H, Jouybari A. 2020. Segment-by-segment comparison technique for earthquake-induced building damage map generation using satellite imagery. Int J Disaster Risk Reduct. [Internet]46:101505.
  • Koshimura S, Moya L, Mas E, Bai Y. 2020. Tsunami damage detection with remote sensing: a review. Geosci. 10(5):177.
  • Labombang M. 2011. Manajemen Risiko Dalam Proyek Konstruksi. Bangunan. 9(1):39–46.
  • Le HQ, Hsiung B-CB. 2014. A novel mobile information system for risk management of adjacent buildings in urban underground construction. Geotech Eng J SEAGS AGSSEA. 45(3):52–63.
  • Liu Y, Wang Y, Zhang J. 2012. New Machine Learning Algorithm: random Forest. BT - Information Computing and Applications. In: liu B, Ma M, Chang J, editors. Berlin, Heidelberg: springer Berlin Heidelberg; p. 246–252.
  • Mangalathu S, Sun H, Nweke CC, Yi Z, Burton HV. 2020. Classifying earthquake damage to buildings using machine learning. Earthq Spectra. 36(1):183–208.
  • Maxar 2018. Satellite Imagery [Internet]. [accessed 2022 Apr 1]. https://www.maxar.com/imagery-leadership.
  • Maxar 2019. Open Data Program Disaster Response Geospatial Analytics [Internet]. [accessed 2022 Apr 1]. https://www.maxar.com/open-data.
  • Meilano I, Rahadian A, Suwardhi D, Suminar W, Atmaja F, Pratama C, Sunarti E, Haksama S. 2020. Analysis of damage to buildings affected by the tsunami in the Palu coastal area using deep learning.
  • Meslem A, Yamazaki F, Maruyama Y. 2011. Accurate evaluation of building damage in the 2003 Boumerdes, Algeria Earthquake from Quickbird satellite images. J Earthquake Tsunami. 05(01):1–18.
  • Ministry of Energy and Mineral Resources Republic of Indonesia 2018. Response to the Tsunami in the Sunda Strait, 22 December 2018 [Internet]. [accessed 2022 Apr 8]. https://www.esdm.go.id/id/media-center/arsip-berita/tanggapan-kejadian-tsunami-di-selat-sunda-tanggal-22-desember-2018.
  • Ministry of Marine Affairs and Fisheries 2019. The Nation’s Future Sea, Let’s Keep Up Together [Internet]. [accessed 2022 Apr 2]. https://kkp.go.id/artikel/12993-laut-masa-depan-bangsa-mari-jaga-bersama.
  • Monfort D, Negulescu C, Belvaux M. 2019. Remote sensing vs. field survey data in a post-earthquake context: potentialities and limits of damaged building assessment datasets. Remote Sens Appl Soc Environ. [Internet]. 14(February):46–59.
  • Moya L, Muhari A, Adriano B, Koshimura S, Mas E, Marval-Perez LR, Yokoya N. 2020. Detecting urban changes using phase correlation and ℓ1-based sparse model for early disaster response: a case study of the 2018 Sulawesi Indonesia earthquake-tsunami. Remote Sens Environ. 242:111743.
  • Naito S, Tomozawa H, Mori Y, Nagata T, Monma N, Nakamura H, Fujiwara H, Shoji G. 2020. Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake. Earthq Spectra. 36(3):1166–1187.
  • NOAA. What is a tsunami? [Internet]. [accessed 2022 Mar 23]. https://oceanservice.noaa.gov/facts/tsunami.html.
  • Pattiaratchi C. 2014. Tsunamis — their causes and effects. (January 2005).
  • Radhika S, Tamura Y, Matsui M. 2015. Cyclone damage detection on building structures from pre- and post-satellite images using wavelet based pattern recognition. J Wind Eng Ind Aerodyn. [Internet]. 136:23–33.
  • Saha K, Frøyen YK. 2021. Learning GIS Using Open Source Software: an Applied Guide for Geo-spatial Analysis. London: Routledge India.
  • Speiser JL, Miller ME, Tooze J, Ip E. 2019. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst Appl. 134(336):93–101.
  • Suppasri A, Koshimura S, Imai K, Mas E, Gokon H, Muhari A, Imamura F. 2012. Damage characteristic and field survey of the 2011 Great East Japan tsunami in Miyagi Prefecture. Coast Eng J. [Internet]. 54(1):1250005–1250030.
  • Suppasri A, Mas E, Charvet I, Gunasekera R, Imai K, Fukutani Y, Abe Y, Imamura F. 2013. Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami. Nat Hazards. 66(2):319–341.
  • Tang Y, Qiu F, Jing L, Shi F, Li X. 2021. A recurrent curve matching classification method integrating within-object spectral variability and between-object spatial association. Int J Appl Earth Obs Geoinf. 101:102367.
  • The National Agency for Disaster Countermeasure 2016. Disasters Risk of Indonesia. Int J Disaster Risk Sci [Internet].:22.
  • The Parliamentary Office of Science and Technology 2020. Remote sensing and machine learning. UK Parliam POSTNOTE No 628.(628):p. 1–7.
  • USGS. What is a digital elevation model (DEM) [Internet]. [accessed 2022 Apr 1]. https://www.usgs.gov/faqs/what-digital-elevation-model-dem.
  • Wang Y, Li S, Teng F, Lin Y, Wang M, Cai H. 2022. Improved mask R-CNN for rural building roof type recognition from UAV high-resolution images: a case study in Hunan Province, China. Remote Sens. 14(2):265.
  • Westen CV, Kingma N, Montoya L. 2009. Guide book Session 4: elements at Risk. Guid B. 1–43.
  • Widyatmanti A. 2020. Sentinel-1 and Sentinel-2 Data Fusion Based on Random Forest Algorithm for Mapping Types of Damage to Buildings in Pemenang-Lombok Earthquake in 2018. Yogyakarta. Indonesia: Gajahmada University.
  • Zamani Joharestani M, Cao C, Ni X, Bashir B, Talebiesfandarani S. 2019. PM2. 5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere (Basel). 10(7):373.
  • Zhang R, Li H, Duan K, You S, Liu K, Wang F, Hu Y. 2020. Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging. Remote Sens. 12(16):2621.