1,703
Views
4
CrossRef citations to date
0
Altmetric
Article

Understanding spatiotemporal evolution of the surface urban heat island in the Bangkok metropolitan region from 2000 to 2020 using enhanced land surface temperature

, ORCID Icon, , , &
Article: 2174904 | Received 04 Aug 2022, Accepted 15 Nov 2022, Published online: 06 Feb 2023

References

  • Adulkongkaew T, Satapanajaru T, Charoenhirunyingyos S, Singhirunnusorn W. 2020. Effect of land cover composition and building configuration on land surface temperature in an urban-sprawl city, case study in Bangkok Metropolitan Area, Thailand. Heliyon. 6(8):e04485.
  • Arifwidodo S, Chandrasiri O. 2021. The effects of park improvement on park use and park-based physical activity. J Archit Urbanism. 45:73–79.
  • Arifwidodo SD, Chandrasiri O. 2020a. Urban heat stress and human health in Bangkok, Thailand. Environ Res. 185:109398.
  • Arifwidodo SD, Chandrasiri O. 2020b. Association between park characteristics and park-based physical activity using systematic observation: insights from Bangkok, Thailand. Sustainability. 12(6):2559.
  • Arifwidodo SD, Tanaka T. 2015. The characteristics of urban heat island in Bangkok, Thailand. Proc-Soc Behav Sci. 195:423–428.
  • Bonafoni S, Keeratikasikorn C. 2018. Land surface temperature and urban density: multiyear modeling and relationship analysis using MODIS and Landsat data. Remote Sensing. 10(9):1471.
  • Cao S, Cai Y, Du M, Weng Q, Lu L. 2022. Seasonal and diurnal surface urban heat islands in China: an investigation of driving factors with three-dimensional urban morphological parameters. GISci Remote Sensing. 59(1):1121–1142.
  • Chakraborty T, Lee X. 2019. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int J Appl Earth Obs Geoinf. 74:269–280.
  • Chatterjee RS, Singh N, Thapa S, Sharma D, Kumar D. 2017. Retrieval of land surface temperature (LST) from Landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs. Int J Appl Earth Obs Geoinf. 58:264–277.
  • Cheung PK, Livesley SJ, Nice KA. 2021. Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates. Sustainable Cities Soc. 71:102974.
  • Cheval S, Dumitrescu A, Irașoc A, Paraschiv M-G, Perry M, Ghent D. 2022. MODIS-based climatology of the Surface Urban Heat Island at country scale (Romania). Urban Clim. 41:101056.
  • Deliry SI, Avdan ZY, Avdan U. 2021. Extracting urban impervious surfaces from Sentinel-2 and Landsat-8 satellite data for urban planning and environmental management. Environ Sci Pollut Res Int. 28(6):6572–6586.
  • Dilawar A, Chen B, Trisurat Y, Tuankrua V, Arshad A, Hussain Y, Measho S, Guo L, Kayiranga A, Zhang H, et al. 2021. Spatiotemporal shifts in thermal climate in responses to urban cover changes: a-case analysis of major cities in Punjab, Pakistan. Geomatics Nat Hazards Risk. 12(1):763–793.
  • Estoque RC, Murayama Y, Myint SW. 2017. Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia. Sci Total Environ. 577:349–359.
  • Estoque RC, Ooba M, Seposo X, Togawa T, Hijioka Y, Takahashi K, Nakamura S. 2020. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat Commun. 11(1):1581.
  • Ezimand K, Chahardoli M, Azadbakht M, Matkan AA. 2021. Spatiotemporal analysis of land surface temperature using multi-temporal and multi-sensor image fusion techniques. Sustainable Cities Soc. 64:102508.
  • Feng G, Masek JG, Schwaller MR, Hall FF. 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sensing. 44(8):2207–2218.
  • Fotheringham AS, Yang W, Kang W. 2017. Multiscale geographically weighted regression (MGWR). Ann Am Assoc Geogr. 107(6):1247–1265.
  • Ghamisi P, Rasti B, Yokoya N, Wang Q, Hofle B, Bruzzone L, Bovolo F, Chi M, Anders K, Gloaguen R, et al. 2019. Multisource and multitemporal data fusion in remote sensing: a comprehensive review of the state of the art. IEEE Geosci Remote Sens Mag (Replaces Newsletter). 7(1):6–39.
  • Giridharan R, Emmanuel R. 2018. The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: a review. Sustainable Cities Soc. 40:677–687.
  • Guo G, Wu Z, Xiao R, Chen Y, Liu X, Zhang X. 2015. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape Urban Plann. 135:1–10.
  • Halder B, Bandyopadhyay J, Banik P. 2021. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustainable Cities Soc. 74:103186.
  • Henao JJ, Rendón AM, Salazar JF. 2020. Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Clim. 31:100542.
  • Kaminski A, Bauer D, Bell K, Loftin C, Nelson E. 2021. Using landscape metrics to characterize towns along an urban-rural gradient. Landscape Ecol. 36:1–20.
  • Kedia S, Bhakare SP, Dwivedi AK, Islam S, Kaginalkar A. 2021. Estimates of change in surface meteorology and urban heat island over northwest India: impact of urbanization. Urban Clim. 36(34):100782.
  • Keeratikasikorn C, Bonafoni S. 2018a. Satellite images and gaussian parameterization for an extensive analysis of urban heat islands in Thailand. Remote Sensing. 10(5):665.
  • Keeratikasikorn C, Bonafoni S. 2018b. Urban Heat Island Analysis over the Land Use Zoning Plan of Bangkok by Means of Landsat 8 Imagery. Remote Sensing. 10(3):440.
  • Khare V, Vajpai A, Gupta D. 2021. A big picture of urban heat island mitigation strategies and recommendation for India. Urban Clim. 37:100845.
  • Kim SW, Brown RD. 2021. Urban heat island (UHI) intensity and magnitude estimations: a systematic literature review. Sci Total Environ. 779:146389.
  • Lemus-Canovas M, Martin-Vide J, Moreno-Garcia MC, Lopez-Bustins JA. 2020. Estimating Barcelona’s metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature. Sci Total Environ. 699:134307.
  • Limsakul A, Singhruck P. 2016. Long-term trends and variability of total and extreme precipitation in Thailand. Atmos Res. 169:301–317.
  • Liu X, Zhou Y, Yue W, Li X, Liu Y, Lu D. 2020. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. J Cleaner Prod. 257:120529.
  • Lu L, Weng Q, Guo H, Feng S, Li Q. 2019b. Assessment of urban environmental change using multi-source remote sensing time series (2000–2016): a comparative analysis in selected megacities in Eurasia. Sci Total Environ. 684:567–577.
  • Lu L, Weng Q, Xiao D, Guo H, Hui W. 2020. Spatiotemporal variation of surface urban heat islands in relation to land cover composition and configuration: a multi-scale case study of Xi’an, China. Remote Sensing. 12(17):2713.
  • Lu L, Weng Q, Xie Y, Guo H, Li Q. 2019a. An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery. Energy. 189:116351.
  • Malakar N, Hulley G, Hook S, Laraby K, Cook M, Schott J. 2018. An operational land surface temperature product for Landsat thermal data: methodology and validation. IEEE Trans Geosci Remote Sens. 56(10):5717–5735.
  • Manoli G, Fatichi S, Schläpfer M, Yu K, Crowther TW, Meili N, Burlando P, Katul GG, Bou-Zeid E. 2019. Magnitude of urban heat islands largely explained by climate and population. Nature. 573(7772):55–60.
  • Marcotullio PJ, Keßler C, Fekete BM. 2021. The future urban heat-wave challenge in Africa: exploratory analysis. Global Environ Change. 66:102190.
  • Mathew A, Khandelwal S, Kaul N. 2018. Analysis of diurnal surface temperature variations for the assessment of surface urban heat island effect over Indian cities. Energy Build. 159:271–295.
  • Mentaschi L, Duveiller G, Zulian G, Corbane C, Pesaresi M, Maes J, Stocchino A, Feyen L. 2022. Global long-term mapping of surface temperature shows intensified intra-city urban heat island extremes. Global Environ Change. 72:102441.
  • Mohammad P, Goswami A. 2021. Quantifying diurnal and seasonal variation of surface urban heat island intensity and its associated determinants across different climatic zones over Indian cities. GISci Remote Sensing. 58(7):955–981.
  • Mondal A, Guha S, Kundu S. 2021. Dynamic status of land surface temperature and spectral indices in Imphal city, India from 1991 to 2021. Geomatics Nat Hazards Risk. 12(1):3265–3286.
  • Pakarnseree R, Chunkao K, Bualert S. 2018. Physical characteristics of Bangkok and its urban heat island phenomenon. Build Environ. 143:561–569.
  • Pimonsree S, Limsakul A, Kammuang A, Kachenchart B, Kamlangkla C. 2022. Urbanization-induced changes in extreme climate indices in Thailand during 1970–2019. Atmos Res. 265:105882.
  • Raj S, Paul S, Chakraborty A, Kuttippurath J. 2020. Anthropogenic forcing exacerbating the urban heat islands in India. J Environ Manage. 257:110006.
  • Schwaab J, Meier R, Mussetti G, Seneviratne S, Bürgi C, Davin EL. 2021. The role of urban trees in reducing land surface temperatures in European cities. Nat Commun. 12(1):6763.
  • Sekertekin A, Bonafoni S. 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing. 12(2):294.
  • Singh CA, Verma P, Singh V, Meena S. 2022. Earth observation data sets in monitoring of urbanization and urban heat island of Delhi, India. Geomatics Nat Hazards Risk. 13:1762–1779.
  • Sobrino JA, Oltra-Carrió R, Sòria G, Bianchi R, Paganini M. 2012. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sens Environ. 117:50–56.
  • Stewart D, Oke TR. 2012. Local climate zones for urban temperature studies. Bull Amer Meterol Soc. 93(12):1879–1900.
  • Sultana S, Satyanarayana ANV. 2020. Impact of urbanisation on urban heat island intensity during summer and winter over Indian metropolitan cities. Environ Monit Assess. 191(3):789.
  • Tariq A, Riaz I, Ahmad Z, Yang BS, Amin M, Kausar R, Andleeb S, Farooqi MA, Rafiq M. 2020. Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environ Earth Sci. 79(1):40.
  • United Nations. 2015. Transforming our world: the 2030 Agenda for Sustainable Development. New York (NY).
  • Venter ZX, Chakraborty T, Lee X. 2021. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci Adv. 7(22):eabb9569.
  • Weng Q, Firozjaei MK, Sedighi A, Kiavarz M, Alavipanah SK. 2018. Statistical analysis of surface urban heat island intensity variations: A case study of Babol city, Iran. GISci Remote Sensing. 56(4):576–604.
  • Weng Q, Fu P, Gao F. 2014. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens Environ. 145:55–67.
  • Worawiwat A, Chaleeraktrakoon C, Sharma A. 2021. Is increased flooding in Bangkok a result of rising local temperatures? J Hydrol X. 13:100095.
  • Xian G, Shi H, Zhou Q, Auch R, Gallo K, Wu Z, Kolian M. 2022. Monitoring and characterizing multi-decadal variations of urban thermal condition using time-series thermal remote sensing and dynamic land cover data. Remote Sens Environ. 269:112803.
  • Xie J, Ren C, Li X, Chung L. 2021. Investigate the urban growth and urban-rural gradients based on local climate zones (1999–2019) in the Greater Bay Area, China. Remote Sens Appl: Soc Environ. 25:100669.
  • Xu G, Jiao L, Liu J, Shi Z, Zeng C, Liu Y. 2019. Understanding urban expansion combining macro patterns and micro dynamics in three Southeast Asian megacities. Sci Total Environ. 660:375–383.
  • Zhao L, Lee X, Smith RB, Oleson K. 2014. Strong contributions of local background climate to urban heat islands. Nature. 511(7508):216–219.
  • Zhou D, Xiao J, Bonafoni S, Berger C, Deilami K, Zhou Y, Frolking S, Yao R, Qiao Z, Sobrino JA. 2019. Satellite remote sensing of surface urban heat islands: progress, challenges, and perspectives. Remote Sensing. 11(1):48.
  • Zhu X, Chen J, Gao F, Chen X, Masek JG. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens Environ. 114(11):2610–2623.
  • Zhu X, Helmer EH, Gao F, Liu D, Chen J, Lefsky MA. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens Environ. 172:165–177.