1,048
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Insights into spatial differential characteristics of landslide susceptibility from sub-region to whole-region cased by northeast Chongqing, China

, , , ORCID Icon, , & show all
Article: 2190858 | Received 23 Aug 2022, Accepted 09 Mar 2023, Published online: 23 Mar 2023

References

  • Abbaszadeh Shahri A, Maghsoudi Moud F. 2021. Landslide susceptibility mapping using hybridized block modular intelligence model. Bull Eng Geol Environ. 80(1):267–284.
  • Abbaszadeh Shahri A, Spross J, Johansson F, Larsson S. 2019. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. CATENA. 183:104225.
  • Alvioli M, Marchesini I, Reichenbach P, Rossi M, Ardizzone F, Fiorucci F, Guzzetti F. 2016. Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci Model Dev. 9(11):3975–3991.
  • Ao Y, Li H, Zhu L, Ali S, Yang Z. 2019. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J Pet Sci Eng. 174:776–789.
  • Baeza C, Lantada N, Amorim S. 2016. Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ Earth Sci. 75(19):1318.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140.
  • Camilo DC, Lombardo L, Mai PM, Dou J, Huser R. 2017. Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model. Environ Model Softw. 97:145–156.
  • Can R, Kocaman S, Gokceoglu C. 2021. A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk Dam, Turkey. Appl Sci. 11(11):4993.
  • Cao J, Zhang Z, Wang C, Liu J, Zhang L. 2019. Susceptibility assessment of landslides triggered by earthquakes in the Western Sichuan Plateau. CATENA. 175:63–76.
  • Chen C, Zhang Q, Ma Q, Yu B. 2019. LightGBM-PPI: predicting protein-protein interactions through LightGBM with multi-information fusion. Chemometr Intell Lab Syst. 191:54–64.
  • Cutler A, Cutler DR, Stevens JR. 2012. Random Forests. In: Zhang C, Ma Y, editors. Ensemble machine learning: methods and applications. Boston, MA: Springer US. p. 157–175.
  • Deng H, Wu X, Zhang W, Liu Y, Li W, Li X, Zhou P, Zhuo W. 2022. Slope-unit scale landslide susceptibility mapping based on the random forest model in deep valley areas. Remote Sens. 14(17):4245.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ. 662:332–346.
  • Froude MJ, Petley DN. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci. 18(8):2161–2181.
  • Ge Y, Chen H, Zhao B, Tang H, Lin Z, Xie Z, Lv L, Zhong P. 2018. A comparison of five methods in landslide susceptibility assessment: a case study from the 330-kV transmission line in Gansu Region, China. Environ Earth Sci. 77(19):662.
  • Genuer R, Poggi J-M, Tuleau-Malot C, Villa-Vialaneix N. 2017. Random Forests for Big Data. Big Data Res. 9:28–46.
  • Gorum T, van Westen CJ, Korup O, van der Meijde M, Fan X, van der Meer FD. 2013. Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake. Geomorphology. 184:127–138.
  • He X, Mai X, Shen G. 2021. Poverty and physical geographic factors: an empirical analysis of Sichuan Province using the GWR model. Sustainability. 13(1):100.
  • Huang F, Cao Z, Guo J, Jiang S-H, Li S, Guo Z. 2020a. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. CATENA. 191:104580.
  • Huang F, Cao Z, Jiang S-H, Zhou C, Huang J, Guo Z. 2020b. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides. 17(12):2919–2930.
  • Huang F, Pan L, Fan X, Jiang S-H, Huang J, Zhou C. 2022. The uncertainty of landslide susceptibility prediction modeling: suitability of linear conditioning factors. Bull Eng Geol Environ. 81(5):182.
  • Huang F, Tao S, Chang Z, Huang J, Fan X, Jiang S-H, Li W. 2021a. Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments. Landslides. 18(11):3715–3731.
  • Huang F, Ye Z, Jiang S-H, Huang J, Chang Z, Chen J. 2021b. Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. CATENA. 202:105250.
  • Huang F, Zhang J, Zhou C, Wang Y, Huang J, Zhu L. 2020c. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides. 17(1):217–229.
  • Huang Y, Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. Catena. 165:520–529.
  • Isojunno S, Sadykova D, DeRuiter S, Cure C, Visser F, Thomas L, Miller PJO, Harris CM. 2017. Individual, ecological, and anthropogenic influences on activity budgets of long-finned pilot whales. Ecosphere. 8(12):e02044.
  • Jacquemart M, Tiampo K. 2021. Leveraging time series analysis of radar coherence and normalized difference vegetation index ratios to characterize pre-failure activity of the Mud Creek landslide, California. Nat Hazards Earth Syst Sci. 21(2):629–642.
  • Jiang S-H, Huang J, Huang F, Yang J, Yao C, Zhou C-B. 2018. Modelling of spatial variability of soil undrained shear strength by conditional random fields for slope reliability analysis. Appl Math Modell. 63:374–389.
  • Jones S, Kasthurba AK, Bhagyanathan A, Binoy BV. 2021. Landslide susceptibility investigation for Idukki district of Kerala using regression analysis and machine learning. Arab J Geosci. 14(10):838.
  • Latha CBC, Jeeva SC. 2019. Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Inf Med Unlocked. 16:100203.
  • Liao M,Wen H,Yang L. 2022. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: A case of Wushan and Wuxi counties, China. CATENA. 217:106428.
  • Min D-H, Yoon H-K. 2021. Suggestion for a new deterministic model coupled with machine learning techniques for landslide susceptibility mapping. Sci Rep. 11(1):6594.
  • Nhu V-H, Shirzadi A, Shahabi H, Singh SK, Al-Ansari N, Clague JJ, Jaafari A, Chen W, Miraki S, Dou J, et al. 2020. Shallow landslide susceptibility mapping: a comparison between logistic model tree, logistic regression, Naïve Bayes tree, artificial neural network, and support vector machine algorithms. IJERPH. 17(8):2749.
  • de Oliveira GG, Ruiz LFC, Guasselli LA, Haetinger C. 2019. Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil. Nat Hazards. 99(2):1049–1073.
  • Pham BT, Bui DT, Prakash I, Dholakia MB. 2017. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena. 149:52–63.
  • Pham BT, Vu VD, Costache R, Phong TV, Ngo TQ, Tran T-H, Nguyen HD, Amiri M, Tan MT, Trinh PT, et al. 2022. Landslide susceptibility mapping using state-of-the-art machine learning ensembles. Geocarto Int. 37(18):5175–5200.
  • Pourghasemi HR, Mohammady M, Pradhan B. 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: safarood Basin, Iran. CATENA. 97:71–84.
  • Rong G, Alu S, Li K, Su Y, Zhang J, Zhang Y, Li T. 2020. Rainfall induced landslide susceptibility mapping based on Bayesian optimized Random Forest and gradient boosting decision tree models – a case study of Shuicheng County, China. Water. 12(11):3066.
  • Saber M, Boulmaiz T, Guermoui M, Abdrabo KI, Kantoush SA, Sumi T, Boutaghane H, Nohara D, Mabrouk E. 2021. Examining LightGBM and CatBoost models for wadi flash flood susceptibility prediction. Geocarto Int. 37(25):7462–7487.
  • Sahin EK. 2022. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto Int. 37(9):2441–2465.
  • Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet J-P. 2018. Optimizing landslide susceptibility zonation: effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology. 301:10–20.
  • Sestraș P, Ștefan B, Roșca S, Naș S, Bondrea MV, Gâlgău R, Vereș I, Sălăgean T, Spalević V, Cîmpeanu SM. 2019. Landslides susceptibility assessment based on GIS statistical bivariate analysis in the hills surrounding a metropolitan area. Sustainability. 11(5):1362.
  • Sun D,Gu Q,Wen H,Xu J,Zhang Y,Shi S,Xue M,Zhou X. 2022. Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Res. 10.1016/j.gr.2022.07.013.
  • Sun D, Gu Q, Wen H, Shi S, Mi C, Zhang F. 2022. A hybrid landslide warning model coupling susceptibility zoning and precipitation. Forests. 13(6):827.
  • Sun D, Shi S, Wen H, Xu J, Zhou X, Wu J. 2021a. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology. 379:107623.
  • Sun D, Wen H, Wang D, Xu J. 2020a. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology. 362:107201.
  • Sun D, Xu J, Wen H, Wang D. 2021b. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest. Eng Geol. 281:105972.
  • Sun D, Xu J, Wen H, Wang Y. 2020b. An optimized Random forest model and its generalization ability in landslide susceptibility mapping: application in two areas of Three Gorges Reservoir. China. J Earth Sci. 31(6):1068–1086.
  • Taalab K, Cheng T, Zhang Y. 2018. Mapping landslide susceptibility and types using Random Forest. Big Earth Data. 2(2):159–178.
  • Wang Y, McElroy MB, Boersma KF, Eskes HJ, Veefkind JP. 2007. Traffic restrictions associated with the Sino-African summit: reductions of NOx detected from space: change in Beijing NOX by traffic control. Geophys Res Lett. 34(8):L08814.
  • Wang Y, Sun D, Wen H, Zhang H, Zhang F. 2020. Comparison of Random Forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang County (Chongqing, China). IJERPH. 17(12):4206.
  • Wang Y, Wen H, Sun D, Li Y. 2021. Quantitative assessment of landslide risk based on susceptibility mapping using Random Forest and GeoDetector. Remote Sens. 13(13):2625.
  • Yan G, Liang S, Zhao H. 2017. An approach to improving slope unit division using GIS technique. Scientia Geographica Sinica. 37(11):1764–1770.
  • Yang C, Liu L-L, Huang F, Huang L, Wang X-M. 2022. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Res. https://doi.org/10.1016/j.gr.2022.05.012
  • Yu L, Cao Y, Zhou C, Wang Y, Huo Z. 2019. Landslide susceptibility mapping combining information gain ratio and support vector machines: a case study from Wushan segment in the Three Gorges Reservoir Area, China. Appl Sci. 9(22):4756.
  • Yu X, Gao H. 2020. A landslide susceptibility map based on spatial scale segmentation: a case study at Zigui-Badong in the Three Gorges Reservoir Area, China. PLoS One. 15(3):e0229818.
  • Yu X, Zhang K, Song Y, Jiang W, Zhou J. 2021. Study on landslide susceptibility mapping based on rock–soil characteristic factors. Sci Rep. 11(1):15476.
  • Zhang J, Ma X, Zhang J, Sun D, Zhou X, Mi C, Wen H. 2023. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J Environ Manage. 332:117357.
  • Zhao Y, Bai C, Xu C, Foong LK. 2021a. Efficient metaheuristic-retrofitted techniques for concrete slump simulation. Smart Struct Syst. 27(5):745–759.
  • Zhao Y, Hu H, Bai L, Tang M, Chen H, Su D. 2021b. Fragility analyses of bridge structures using the logarithmic piecewise function-based probabilistic seismic demand model. Sustainability. 13(14):7814.
  • Zhao Y, Hu H, Song C, Wang Z. 2022. Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network. Measurement. 194:110993.
  • Zhao Y, Moayedi H, Bahiraei M, Foong LK. 2020. Employing TLBO and SCE for optimal prediction of the compressive strength of concrete. Smart Struct Syst. 26(6):753–763.
  • Zhou X, Wen H, Li Z, Zhang H, Zhang W. 2022. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost. Geocarto Int. 37(26): 13419–13450.