3,348
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of estimation of slope-length gradient (LS) factor for entire Afghanistan

ORCID Icon & ORCID Icon
Article: 2200890 | Received 19 Dec 2022, Accepted 04 Apr 2023, Published online: 18 Apr 2023

References

  • ADB-CMS. 2019. Afghanistan: Arghandab Integrated Water Resources Development Project-Asian Development Bank (ADB).
  • Aiello A, Adamo M, Canora F. 2015. Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy. Catena. 131:174–185.
  • AIMS-FAO. 2004. Watershed atlas of Afghanistan. Rome, Italy: AIMS-FAO.
  • Arekhi S, Darvishi A, Shabani A, Fathizad H, Ahmadai Abchin S. 2012. Mapping soil erosion and sediment yield susceptibility using RUSLE, remote sensing and GIS (Case study: Cham Gardalan Watershed, Iran). J Adv Environ Biol. 6(1):109–124.
  • Baby A, Nair A. 2016. Soil erosion estimation of Kuttiyadi River basin using RUSLE. Int Adv Res J Sci Eng Technolo. 3(3):275–279.
  • Bagherzadeh A, Mansouri D, Mohammad R. 2013. Evaluation of sediment yield and soil loss by the MPSIAC model using GIS at Golestan watershed, northeast of Iran. Arab J Geosci. 6(9):3349–3362.
  • Berihun ML, Tsunekawa A, Haregeweyn N, Dile YT, Tsubo M, Fenta AA, Meshesha DT, Ebabu K, Sultan D, Srinivasan R. 2020. Evaluating runoff and sediment responses to soil and water conservation practices by employing alternative modeling approaches. Sci Total Environ. 747:141118.
  • Bridges E, Oldeman L. 1999. Global assessment of human-induced soil degradation. Arid Soil Res Rehabil. 13(4):319–325.
  • Chadli K. 2016. Estimation of soil loss using RUSLE model for Sebou watershed (Morocco). Model Earth Syst Environ. 2(2):51.
  • Chakrabortty R, Pal SC, Arabameri A, Ngo PTT, Chowdhuri I, Roy P, Malik S, Das B. 2022. Water-induced erosion potentiality and vulnerability assessment in Kangsabati river basin, eastern India. Environ Dev Sustain. 24(3):3518–3557.
  • Chakrabortty R, Pal SC, Sahana M, Mondal A, Dou J, Pham BT, Yunus AP. 2020. Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Nat Hazards. 104(2):1259–1294.
  • Chuenchum P, Xu M, Tang W. 2019. Estimation of soil erosion and sediment yield in the Lancang–Mekong River using the modified revised universal soil loss equation and GIS techniques. Water. 12(1):135.
  • Dams WCo. 2000. Dams and development: a new framework for decision-making: the report of the world commission on dams. Oxford: Earthscan.
  • Das S, Bora PK, Das R. 2022. Estimation of slope length gradient (LS) factor for the sub-watershed areas of Juri River in Tripura. Model Earth Syst Environ. 8(1):1171–1177.
  • De Bie K, Skidmore AK, Toxopeus B, Venus V. 2007. An updated Köppen–Geiger climate classification of the world using very high resolution interpolated climate surfaces of monthly P and T data from 1950 to 2000. ITC News. 4:16–17.
  • De Vente J, Poesen J, Arabkhedri M, Verstraeten G. 2007. The sediment delivery problem revisited. Prog Phys Geogr. 31(2):155–178.
  • Demirci A, Karaburun A. 2012. Estimation of soil erosion using RUSLE in a GIS framework: a case study in the Buyukcekmece Lake watershed, northwest Turkey. Environ Earth Sci. 66(3):903–913.
  • Desmet P, Govers G. 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv. 51(5):427–433.
  • Elnashar A, Zeng H, Wu B, Fenta AA, Nabil M, Duerler R. 2021. Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework. Sci Total Environ. 793:148466.
  • FAO. 2015. FAO, healthy soils are the basis for healthy food production. Rome, Italy: (FAO); p. 1–4. http://www.fao.org/documents/card/en/c/645883cd-ba28-4b16-a7b8-34babbb3c505/.
  • FAO & ITPS. 2015. Status of the world’s soil resources (SWSR)–main report. (ISBN 978-92-5-109004-6). (Food and agriculture organization of the United Nations and intergovernmental technical panel on soils. Rome, Italy: FAO & ITPS.
  • Flügel WA, Märker M, Moretti S, Rodolfi G, Sidrochuk A. 2003. Integrating geographical information systems, remote sensing, ground truthing and modelling approaches for regional erosion classification of semi‐arid catchments in South Africa. Hydrol Process. 17(5):929–942.
  • Fu G, Chen S, McCool DK. 2006. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil Tillage Res. 85(1–2):38–49.
  • Ganasri BP, Ramesh H. 2016. Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geosci Front. 7(6):953–961.
  • Ghosal K, Das Bhattacharya S. 2020. A review of RUSLE model. J Indian Soc Remote Sens. 48(4):689–707.
  • Goes BJM, Howarth SE, Wardlaw RB, Hancock IR, Parajuli U. 2013. Helmand river basin master plan-technical report 5. Afghanistan: Ministry of Energy and Water.
  • Griffin M, Beasley D, Fletcher J, Foster G. 1988. Estimating soil loss on topographically non-uniform field and farm units. J Soil Water Conserv. 43(4):326–331.
  • Gupta S, Kumar S. 2017. Simulating climate change impact on soil erosion using RUSLE model − A case study in a watershed of mid-Himalayan landscape. J Earth Syst Sci. 126(3):43.
  • Gwapedza D, Slaughter A, Hughes D, Mantel S. 2018. Regionalising MUSLE factors for application to a data-scarce catchment. Proc IAHS. 377:19–24.
  • Hui L, Xiaoling C, Lim KJ, Xiaobin C, Sagong M. 2010. Assessment of soil erosion and sediment yield in Liao watershed, Jiangxi Province, China, Using USLE, GIS, and RS. J Earth Sci. 21(6):941–953.
  • Jain MK, Das D. 2010. Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resour Manage. 24(10):2091–2112.
  • John FS, Sher Jan A. 2016. Transboundary water resources in Afghanistan. Climate change and land-use implications. Amsterdam, Netherlands: Elsevier.
  • Kaffas K, Pisinaras V, Al Sayah MJ, Santopietro S, Righetti M. 2021. A USLE-based model with modified LS-factor combined with sediment delivery module for Alpine basins. Catena. 207:105655.
  • Kashiwar SR, Kundu MC, Dongarwar UR. 2022. Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS. Nat Hazards. 110(2):937–959.
  • Khosrokhani M, Pradhan B. 2014. Spatio-temporal assessment of soil erosion at Kuala Lumpur metropolitan city using remote sensing data and GIS. Geomat Nat Hazard Risk. 5(3):252–270.
  • Koppen W. 1936. Das geographische system der klimat. Handbuch Der Klimatologie. Vol. 46. Berlin, Germany: Gebrüder Borntraeger.
  • Kruk E, Klapa P, Ryczek M, Ostrowski K. 2020. Influence of DEM elaboration methods on the USLE model topographical factor parameter on steep slopes. Remote Sens. 12(21):3540.
  • Kulimushi LC, Choudhari P, Mubalama LK, Banswe GT. 2021. GIS and remote sensing-based assessment of soil erosion risk using RUSLE model in South-Kivu province, eastern, Democratic Republic of Congo. Geomatics Nat Hazards Risk. 12(1):961–987.
  • Kulimushi LC, Maniragaba A, Choudhari P, Elbeltagi A, Uwemeye J, Rushema E, Singh SK. 2021. Evaluation of soil erosion and sediment yield spatio-temporal pattern during 1990–2019. Geomatics Nat Hazards Risk. 12(1):2676–2707.
  • Lanorte A, Cillis G, Calamita G, Nole G, Pilogallo A, Tucci B, De Santis F. 2019. Integrated approach of RUSLE, GIS and ESA Sentinel-2 satellite data for post-fire soil erosion assessment in Basilicata region (Southern Italy). Geomat Nat Hazard Risk. 10(1):1563–1595.
  • Lee S. 2014. Geological application of geographic information system. Korea Inst Geosci Min Resour. 9:109–118.
  • Ligonja PJ, Shrestha RP. 2015. Soil erosion assessment in Kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approach. Land Degrad Dev. 26(4):367–379.
  • Lu D, Li G, Valladares GS, Batistella M. 2004. Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degrad Dev. 15(5):499–512.
  • Mahalingam B, MALIK M, Vinay M. 2015. Assessment of soil erosion using USLE technique: A case study of Mysore district, Karnataka, India. J Remote Sens GIS. 6(3):1–7.
  • Maner SB. 1958. Factors affecting sediment delivery rates in the Red Hills physiographic area. Trans AGU. 39(4):669–675.
  • Markose VJ, Jayappa K. 2016. Soil loss estimation and prioritization of sub-watersheds of Kali River basin, Karnataka, India, using RUSLE and GIS. Environ Monit Assess. 188(4):1–16.
  • McCool DK, Foster GR, Mutchler C, Meyer L. 1989. Revised slope length factor for the Universal Soil Loss Equation. Trans ASAE. 32(5):1571–1576.
  • Mohammadi S, Balouei F, Haji K, Khaledi Darvishan A, Karydas CG. 2021. Country-scale spatio-temporal monitoring of soil erosion in Iran using the G2 model. Int J Digital Earth. 14(8):1019–1039.
  • Moore ID, Burch GJ. 1986. Physical basis of the length‐slope factor in the universal soil loss equation. Soil Sci Soc Am J. 50(5):1294–1298.
  • Moore ID, Wilson JP. 1992. Length-slope factors for the Revised Universal Soil Loss Equation: simplified method of estimation. J Soil Water Conserv. 47(5):423–428.
  • Morgan R. 1974. Estimating regional variations in soil erosion hazard in Peninsular Malaysia. Malay Nat J. 28:94–106.
  • Negese A, Fekadu E, Getnet H. 2021. Potential soil loss estimation and erosion-prone area prioritization using RUSLE, GIS, and remote sensing in Chereti Watershed, Northeastern Ethiopia. Air Soil Water Res. 14:117862212098581.
  • Nikkami D, Shadfar S. 2021. Soil erosion mapping in sediment gauged watersheds of Iran. Watershed Eng Manage. 13(2):479–496.
  • Noori H, Siadatmousavi SM, Mojaradi B. 2016. Assessment of sediment yield using RS and GIS at two sub-basins of Dez Watershed, Iran. Int Soil Water Conserv Res. 4(3):199–206.
  • Oldeman LR, Hakkeling R, Sombroek WG. 1990. World map of the status of human-induced soil degradation: an explanatory note. Netherlands: International Soil Reference and Information Centre.
  • Orville F, William F, Richard H, Glen L, Charles E. 1976. Helmand Valley, soil and water survey of the Helmand River Basin. The International Association of Hydrological Sciences, IAHS-AISH publication.
  • Pal SC, Chakrabortty R. 2019a. Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India. Model Earth Syst Environ. 5(2):369–393.
  • Pal SC, Chakrabortty R. 2019b. Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Adv Space Res. 64(2):352–377.
  • Pal SC, Chakrabortty R, Roy P, Chowdhuri I, Das B, Saha A, Shit M. 2021. Changing climate and land use of 21st century influences soil erosion in India. Gondwana Res. 94:164–185.
  • Pal SC, Shit M. 2017. Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal. Spat Inf Res. 25(3):399–409.
  • Panagos P, Borrelli P, Meusburger K. 2015. A New European slope length and steepness factor (LS-factor) for modeling soil erosion by water. Geosciences. 5(2):117–126.
  • Perkins DC, Culbertson JK. 1970. Hydrographic and sedimentation survey of Kajakai Reservoir, Afghanistan. Washington (DC): US Government Printing Office.
  • Phinzi K, Ngetar NS. 2019. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: a review. Int Soil Water Conserv Res. 7(1):27–46.
  • Prasannakumar V, Shiny R, Geetha N, Vijith H. 2011. Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India. Environ Earth Sci. 64(4):965–972.
  • Rahman MR, Shi ZH, Chongfa C. 2009. Soil erosion hazard evaluation—an integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecol Modell. 220(13–14):1724–1734.
  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington (DC): United States Government Printing.
  • Rubianca B, Bethanna J, Deborah M, Kevin N. 2018. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrol Earth Syst Sci. 22:6059–6086.
  • Saba DS. 2001. Afghanistan: environmental degradation in a fragile ecological setting. Int J Sustain Dev World Ecol. 8(4):279–289.
  • Shrestha R. 2007. Land degradation in Afghanistan.
  • Shroder JF. 2014. John F Shroder - Natural resources in Afghanistan _ geographic and geologic perspectives on centuries of conflict-Elsevier (2014).pdf.
  • Sujatha E, Sridhar V. 2018. Spatial prediction of erosion risk of a small mountainous watershed using RUSLE: a case-study of the Palar Sub-Watershed in Kodaikanal, South India. Water. 10(11):1608.
  • Sujatha ER, Sridhar V. 2019. Mapping of erosion susceptibility using a weighted linear combination model: a case study of a hill sub-watershed in Kodaikkanal, Western Ghats, South India. Remote Sens Appl Soc Environ. 14:34–45.
  • Tapponnier P, Mattauer M, Proust F, Cassaigneau C. 1981. Mesozoic ophiolites, sutures, and arge-scale tectonic movements in Afghanistan. Earth Planet Sci Lett. 52(2):355–371.
  • Thomas J, Joseph S, Thrivikramji K. 2018. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geosci Front. 9(3):893–906.
  • Thorman R. 2007. Water erosion hazard: indicator protocols for soil condition. Canberra, Australia: National Land and Water Resources Audit.
  • US Army Corps, U. S. A. C. E. 2014. Water control manual Kajaki Dam and reservoir Helmand River Basin. Washington (DC): US Army Corps, U. S. A. C. E.
  • US Army Corps of Engineers, U. A. C. E. 2012. Storage capacity estimate for Kajaki reservoir, Afghanistan. Concord (MA): US Army Corps of Engineers, U. A. C. E.
  • Villarreal ML, Norman LM, Yao EH, Conrad CR. 2022. Wildfire probability models calibrated using past human and lightning ignition patterns can inform mitigation of post-fire hydrologic hazards. Geomatics Nat Hazards Risk. 13(1):568–590.
  • Walling DE. 2011. Human impact on the sediment loads of Asian rivers. The International Association of Hydrological Sciences, IAHS-AISH publication.
  • Wischmeier WH, Smith DD. 1978. Predicting rainfall erosion losses: a guide to conservation planning. Hyattsville (MD): Department of Agriculture, Science and Education Administration.
  • Xiao Yang Guo B, Lu Y, Zhang R, Zhang D, Zhen X, Chen S, Wu H, Wei C, Yang L, Zhang Y, et al. 2021. Spatial–temporal evolution patterns of soil erosion in the Yellow River Basin from 1990 to 2015: impacts of natural factors and land use change. Geomat Nat Hazard Risk. 12(1):103–122.
  • Yang X. 2014. Deriving RUSLE cover factor from time-series fractional vegetation cover for hillslope erosion modelling in New South Wales. Soil Res. 52(3):253.
  • Yang Y, Zhao R, Shi Z, Viscarra Rossel RA, Wan D, Liang Z. 2018. Integrating multi-source data to improve water erosion mapping in Tibet, China. Catena. 169:31–45.
  • Zhang H, Wei J, Yang Q, Baartman JEM, Gai L, Yang X, Li S, Yu J, Ritsema CJ, Geissen V. 2017. An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds. Geoderma. 308:36–45.
  • Zhang XC, Wang ZL. 2017. Interrill soil erosion processes on steep slopes. J Hydrol. 548:652–664.