1,654
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Combination four different ensemble algorithms with the generalized linear model (GLM) for predicting forest fire susceptibility

, , , , , & show all
Article: 2206512 | Received 09 Nov 2022, Accepted 19 Apr 2023, Published online: 09 May 2023

References

  • Abdo HG, Almohamad H, Al Dughairi AA, Al-Mutiry M. 2022. GIS-based frequency ratio and analytic hierarchy process for forest fire susceptibility mapping in the western region of Syria. Sustainability. 14(8):4668.
  • Abedi Gheshlaghi H,Feizizadeh B,Blaschke T,Lakes T,Tajbar S. 2021. Forest fire susceptibility modeling using hybrid approaches. Trans GIS. 25(1):311–333.
  • Abram NJ,Henley BJ,Sen Gupta A,Lippmann TJR,Clarke H,Dowdy AJ,Sharples JJ,Nolan RH,Zhang T,Wooster MJ, et al. 2021. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun Earth Environ. 2(1).
  • Achu AL, Thomas J, Aju CD, Gopinath G, Kumar S, Reghunath R. 2021. Machine-learning modelling of fire susceptibility in a forest-agriculture mosaic landscape of southern India. Ecol Inf. 64:101348.
  • Adab H,Kanniah KD,Solaimani K. 2013. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Nat Hazards. 65(3):1723–1743.
  • Agranat V, Perminov V. 2020. Mathematical modeling of wildland fire initiation and spread. Environ Model Softw. 125:104640.
  • Ahmadi K,Kalantar B,Saeidi V,Harandi EKG,Janizadeh S,Ueda N. 2020. Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral sentinel-2 data. Remote Sens. 12(18):3019.
  • Ahmed MR, Hassan QK, Abdollahi M, Gupta A. 2020. Processing of near real time land surface temperature and its application in forecasting forest fire danger conditions. Sensors. 20(4):984.
  • Akıncı HA, Akıncı H. 2023. Machine learning based forest fire susceptibility assessment of Manavgat district (Antalya), Turkey. Earth Sci Inform. 16(1):397–414.
  • Alin A. 2010. Multicollinearity. WIREs Comp Stat. 2(3):370–374.
  • Ardabili S, Mosavi A, Dehghani M, Várkonyi-Kóczy AR. 2019. Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review. In International conference on global research and education. Cham: Springer; p. 52–62.
  • Band SS, Janizadeh S, Saha S, Mukherjee K, Bozchaloei SK, Cerdà A, Shokri M, Mosavi A. 2020. Evaluating the efficiency of different regression, decision tree, and bayesian machine learning algorithms in spatial piping erosion susceptibility using ALOS/PALSAR Data. Land. 9(10):346.
  • Bera B, Shit PK, Sengupta N, Saha S, Bhattacharjee S. 2022. Forest fire susceptibility prediction using machine learning models with resampling algorithms, Northern part of Eastern Ghat Mountain range (India). Geocarto Int. 37(26):11756–11781.
  • Bera B, Shit PK, Sengupta N, Saha S, Bhattacharjee S. 2022. Susceptibility of deforestation hotspots in Terai-Dooars belt of Himalayan Foothills: a comparative analysis of VIKOR and TOPSIS models. J King Saud Univ–Comput Inform Sci. 34(10):8794–8806.
  • Bertrand F, Meyer N, Bertrand MF. 2014. Package ‘plsRglm.
  • Bou-Hamad I, Anouze AL, Larocque D. 2017. An integrated approach of data envelopment analysis and boosted generalized linear mixed models for efficiency assessment. Ann Oper Res. 253(1):77–95.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140.
  • Brillinger DR, Preisler HK, Benoit JW. 2003. Risk assessment: a forest fire example. Lecture notes–monograph series. 1:177–196.
  • Buerkner PC, Buerkner MPC. 2016. Package ‘brms’. https://mran.microsoft.com/snapshot/2016-12-17/web/packages/brms/brms.pdf
  • Bui DT, Bui QT, Nguyen QP, Pradhan B, Nampak H, Trinh PT. 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric Meteorol. 233:32–44.
  • Bui DT, Le K-TT, Nguyen VC, Le HD, Revhaug I. 2016. Tropical forest fire susceptibility mapping at the cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-based kernel logistic regression. Remote Sens. 8(4):347.
  • Carvalho FJ,Santana DGd,Araújo LBd. 2018. Why analyze germination experiments using Generalized Linear Models?. J Seed Sci. 40(3):281–287.
  • Cheret V, Denux JP. 2011. Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GIScience & Remote Sensing. 48(2):171–194.
  • Chew YJ, Ooi SY, Pang YH, Wong KS. 2022. A Review of forest fire combating efforts, challenges and future directions in Peninsular Malaysia, Sabah, and Sarawak. Forests. 13(9):1405.
  • Chicas SD, Østergaard Nielsen J. 2022. Who are the actors and what are the factors that are used in models to map forest fire susceptibility? A systematic review. Nat Hazards. 114(3):2417–2434.
  • Chuvieco E, Cocero D, Riaño D, Martin P, Martı́nez-Vega J, de la Riva J, Pérez F., 2004. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ. 92(3):322–331.
  • Collin A, Bernardin D, Sero-Guillaume O. 2011. A physical-based cellular automaton model for forest-fire propagation. Combust Sci Technol. 183(4):347–369.
  • Das J, Mahato S, Joshi PK, Liou YA. 2023. Forest fire susceptibility zonation in Eastern India using statistical and weighted modelling approaches. Remote Sensing. 15(5):1340.
  • de los Campos G, Pérez-Rodríguez P. 2014. Bayesian generalized linear regression. R Package Version1.0.4. http://CRAN.R-project.org/package=BGLR.
  • de Santana RO, Delgado RC, Schiavetti A. 2021. Modeling susceptibility to forest fires in the Central Corridor of the Atlantic Forest using the frequency ratio method. J Environ Manage. 296:113343.
  • Dhar T,Bhatta B,Aravindan S. 2023. Forest fire occurrence, distribution and risk mapping using geoinformation technology: A case study in the sub-tropical forest of the Meghalaya, India. Remote Sens. Appl: Soc. Environ. 29:100883.
  • Digavinti J, Manikiam B. 2021. Satellite monitoring of forest fire impact and regeneration using NDVI and LST. J Appl Rem Sens. 15(04):042412–042412.
  • Ding B, Gentleman R. 2005. Classification using generalized partial least squares. J Comput and Graph Stat. 14(2):280–298.
  • Eastaugh CS, Hasenauer H. 2014. Deriving forest fire ignition risk with biogeochemical process modelling. Environ Model Softw. 55:132–142.
  • Erten E, Kurgun V, Musaoglu N. 2004. Forest fire risk zone mapping from satellite imagery and GIS. a case study. In XXth Congress of the international society for photogrammetry and remote sensing congress, Istanbul, Turkey; p. 222–230.
  • Eskandari S, Amiri M, Sãdhasivam N, Pourghasemi HR. 2020. Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran. Nat Hazards. 104(1):305–327.
  • Flannigan MD, Haar TV. 1986. Forest fire monitoring using NOAA satellite AVHRR. Can J for Res. 16(5):975–982.
  • Gigović L, Pourghasemi HR, Drobnjak S, Bai S. 2019. Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests. 10(5):408.
  • Gonzalez-Olabarria JR,Brotons L,Gritten D,Tudela A,Teres JA. 2012. Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildland Fire. 21(7):905–914.
  • Hijmans RJ, Van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, Lamigueiro OP, Bevan A, Racine EB, Shortridge A, et al. 2015. Package ‘raster’. R Package. 734:473.
  • Hong H,Tsangaratos P,Ilia I,Liu J,Zhu A-X,Xu C. 2018. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Sci Total Environ. 630:1044–1056. 10.1016/j.scitotenv.2018.02.278. 29554726
  • Hosseini FS, Choubin B, Mosavi A, Nabipour N, Shamshirband S, Darabi H, Haghighi AT. 2020. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method. Sci Total Environ. 711:135161.
  • Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B, Sobotka F, Scheipl F. 2013. Package ‘mboost.
  • Huebner K, Lindo Z, Lechowicz MJ. 2012. Post-fire succession of collembolan communities in a northern hardwood forest. Eur J Soil Biol. 48:59–65.
  • Huesca M, Litago J, Palacios-Orueta A, Montes F, Sebastián-López A, Escribano P. 2009. Assessment of forest fire seasonality using MODIS fire potential: a time series approach. Agric Meteorol. 149(11):1946–1955.
  • Jaafari A,Zenner EK,Panahi M,Shahabi H. 2019. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric For Meteorol. 266–267:198–207.
  • Jain P, Coogan SC, Subramanian SG, Crowley M, Taylor S, Flannigan MD. 2020. A review of machine learning applications in wildfire science and management. Environ Rev. 28(4):478–505.
  • Jaiswal RK, Mukherjee S, Raju KD, Saxena R. 2002. Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf. 4(1):1–10.
  • Junaidi SN, Khalid N, Othman AN, Hamid JRA, Saad NM. 2021. Analysis of the Relationship between Forest Fire and Land Surface Temperature using Landsat 8 OLI/TIRS Imagery. In IOP Conf Ser: Earth Environ Sci. 767(1):012005. May(IOP Publishing.
  • Kalantar B, Ueda N, Idrees MO, Janizadeh S, Ahmadi K, Shabani F. 2020. Forest fire susceptibility prediction based on machine learning models with resampling algorithms on remote sensing data. Remote Sens. 12(22):3682.
  • Kamata A. 2001. Item analysis by the hierarchical generalized linear model. J Educ Meas. 38(1):79–93.
  • Kant Sharma L, Kanga S, Singh Nathawat M, Sinha S, Chandra Pandey P. 2012. Fuzzy AHP for forest fire risk modeling. Dis Preven Manage: Int J. 21(2):160–171.
  • Kuhn M. 2012. The caret package. R Foundation for Statistical Computing, Vienna, Austria. https://cran.r-project.org/package=caret.
  • Kwak H, Lee WK, Saborowski J, Lee SY, Won MS, Koo KS, Lee MB, Kim SN. 2012. Estimating the spatial pattern of human-caused forest fires using a generalized linear mixed model with spatial autocorrelation in South Korea. Int J Geograph Inform Sci. 26(9):1589–1602.
  • Lattimer BY, Hodges JL, Lattimer AM. 2020. Using machine learning in physics-based simulation of fire. Fire Saf J. 114:102991.
  • Mabdeh AN, Al-Fugara AK, Khedher KM, Mabdeh M, Al-Shabeeb AR, Al-Adamat R. 2022. Forest fire susceptibility assessment and mapping using support vector regression and adaptive Neuro-Fuzzy inference system-based evolutionary algorithms. Sustainability. 14(15):9446.
  • Maffei C,Alfieri S,Menenti M. 2018. Relating Spatiotemporal Patterns of Forest Fires Burned Area and Duration to Diurnal Land Surface Temperature Anomalies. Remote Sens. 10(11):1777.
  • Marx BD. 1996. Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics. 38(4):374–381.
  • McCulloch CE, Searle SR. 2004. Generalized, linear, and mixed models. Hoboken, NJ: John Wiley & Sons.
  • McMaster R. 1997. In Memoriam: George F. Jenks (1916-1996). Cartogr Geogr Inf Sci. 24(1):56–59.
  • Milanović S, Marković N, Pamučar D, Gigović L, Kostić P, Milanović SD. 2020. Forest fire probability mapping in eastern Serbia: logistic regression versus random forest method. Forests. 12(1):5.
  • Mohajane M, Costache R, Karimi F, Pham QB, Essahlaoui A, Nguyen H, Laneve G, Oudija F. 2021. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol Indic. 129:107869.
  • Naghibi SA, Hashemi H, Berndtsson R, Lee S. 2020. Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors. J Hydrol. 589:125197.
  • Nuthammachot N, Stratoulias D. 2021. Multi-criteria decision analysis for forest fire risk assessment by coupling AHP and GIS: method and case study. Environ Dev Sustain. 23(12):17443–17458.
  • Pal SC,Chakrabortty R,Saha A,Bozchaloei SK,Pham QB,Linh NTT,Anh DT,Janizadeh S,Ahmadi K. 2022. Evaluation of debris flow and landslide hazards using ensemble framework of Bayesian- and tree-based models. Bull Eng Geol Environ. 81(1).
  • Pandey K, Ghosh SK. 2018. Modeling of parameters for forest fire risk zone mapping. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLII-5:299–304.
  • Pang Y, Li Y, Feng Z, Feng Z, Zhao Z, Chen S, Zhang H. 2022. Forest Fire Occurrence Prediction in China Based on Machine Learning Methods. Remote Sensing. 14(21):5546.
  • Pham BT, Jaafari A, Avand M, Al-Ansari N, Dinh Du T, Yen HPH, Phong TV, Nguyen DH, Le HV, Mafi-Gholami D, et al. 2020. Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry. 12(6):1022.
  • Park PJ, Tian L, Kohane IS. 2002. Linking gene expression data with patient survival times using partial least squares. Bioinformatics. 18(suppl_1):S120–S127.
  • Paul RK. 2006. Multicollinearity: causes, effects and remedies. IASRI, New Delhi. 1(1):58–65.
  • Peres DJ, Cancelliere A. 2014. Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach. Hydrol Earth Syst Sci. 18(12):4913–4931.
  • Pourghasemi HR. 2016. GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models. Scand J Res. 31(1):80–98.
  • Pourghasemi HR, Kariminejad N, Amiri M, Edalat M, Zarafshar M, Blaschke T, Cerda A. 2020. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci Rep. 10(1):3203.
  • Pourghasemi HR, Gayen A, Lasaponara R, Tiefenbacher JP. 2020. Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling. Environ Res. 184:109321.
  • Pourtaghi ZS, Pourghasemi HR, Rossi M. 2015. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environ Earth Sci. 73(4):1515–1533.
  • Prasad AM, Iverson LR, Liaw A. 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems. 9(2):181–199.
  • Reinhardt ED,Keane RE,Brown JK. 2001. Modeling fire effects. Int J Wildland Fire. 10(4):373.
  • Reyes-Bueno F, Loján-Córdova J. 2022. Assessment of three machine learning techniques with open-access geographic data for forest fire susceptibility monitoring—evidence from Southern Ecuador. Forests. 13(3):474.
  • Ríos-Pena L,Kneib T,Cadarso-Suárez C,Marey-Pérez M. 2017. Predicting the occurrence of wildfires with binary structured additive regression models. J Environ Manage. 187:154–165.
  • Rubí JN, de Carvalho PH, Gondim PR. 2023. Application of machine learning models in the behavioral study of forest fires in the Brazilian Federal District region. Eng Appl Artif Intell. 118:105649.
  • Saha A,Pal SC,Santosh M,Janizadeh S,Chowdhuri I,Norouzi A,Roy P,Chakrabortty R. 2021. Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: The present and future scenarios. J Cleaner Prod. 320:128713.
  • Saha S, Bera B, Kumar Shit P, Bhattacharjee S, Sengupta N. 2023. Prediction of forest fire susceptibility applying machine and deep learning algorithms for conservation priorities of forest resources. Rem Sens Appl: Soc Environ. 29:100917.
  • Sandri M, Zuccolotto P. 2008. A bias correction algorithm for the Gini variable importance measure in classification trees. J Comput Graph Stat. 17(3):611–628.
  • Sanjaya R, Puspitasari D. 2018. August. Noise Reduction through Bagging on Neural Network Algorithm for Forest Fire Estimates. In 2018 6th International Conference on Cyber and IT Service Management (CITSM) (pp. 1–5). IEEE.
  • Setiawan I,Mahmud AR,Mansor S,Mohamed Shariff AR,Nuruddin AA. 2004. GIS‐grid‐based and multi‐criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang, Malaysia. Disaster Prev and Management. 13(5):379–386.
  • Shahfahad T, Das T, Naikoo MW, Rihan M, Rahman A. 2022. Forest fire susceptibility mapping by integrating remote sensing and machine learning algorithms. Adv Rem Sens Forest Monitoring. 181–195.
  • Shao Y, Feng Z, Cao M, Wang W, Sun L, Yang X, Ma T, Guo Z, Fahad S, Liu X, et al. 2023. An ensemble model for forest fire occurrence mapping in China. Forests. 14(4):704.
  • Stroup WW. 2012. Generalized linear mixed models: modern concepts, methods and applications. Boca Raton, FL: CRC press.
  • Sutton CD. 2005. Classification and regression trees, bagging, and boosting. In: Dey DK, Rao CR, editor. Handbook of statistics Amsterdam, Netherlands: Elsevier; p. 303–329.
  • Taloor AK, Manhas DS, Kothyari GC. 2021. Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Appl Comput Geosci. 9:100051.
  • Talukdar S, Das T, Naikoo MW, Rihan M, Rahman A. 2022. Forest fire susceptibility mapping by integrating remote sensing and machine learning algorithms. Adv Rem Sens Forest Monitor. 2022:179–195.
  • Tang X, Machimura T, Li J, Liu W, Hong H. 2020. A novel optimized repeatedly random undersampling for selecting negative samples: a case study in an SVM-based forest fire susceptibility assessment. J Environ Manage. 271:111014.
  • Tariq A, Shu H, Siddiqui S, Mousa BG, Munir I, Nasri A, Waqas H, Lu L, Baqa MF. 2021. Forest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, Pakistan. Geomatics Nat Hazards Risk. 12(1):1212–1233.
  • Tehrany MS, Jones S, Shabani F, Martínez-Álvarez F, Bui DT. 2019. A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theor Appl Climatol. 137(1-2):637–653.
  • Tien Bui D,Hoang N-D,Samui P. 2019. Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam). J Environ Manage. 237:476–487.
  • Tomar JS, Kranjčić N, Đurin B, Kanga S, Singh SK. 2021. Forest fire hazards vulnerability and risk assessment in Sirmaur district forest of Himachal Pradesh (India): a geospatial approach. IJGI. 10(7):447.
  • Tran MN, Nguyen N, Nott D, Kohn R. 2020. Bayesian deep net GLM and GLMM. J Comput Graph Stat. 29(1):97–113.
  • Vargas-Cuentas NI, Roman-Gonzalez A. 2021. Satellite-based analysis of forest fires in the bolivian chiquitania and amazon region: case 2019. IEEE Aerosp Electron Syst Mag. 36(2):38–54.
  • Wolfinger R, O'connell M. 1993. Generalized linear mixed models a pseudo-likelihood approach. J Stat Comput Simul. 48(3-4):233–243.
  • Xie Y, Peng M. 2019. Forest fire forecasting using ensemble learning approaches. Neural Comput Appl. 31(9):4541–4550.
  • Yaakob R, Mustapha N, Nuruddin AAB, Sitanggang IS. 2011. Modeling forest fires risk using spatial decision tree. In 2011 3rd Conference on Data Mining and Optimization (DMO). Piscataway, NJ: IEEE; p. 103–107.
  • Yonelinas AP. 1994. Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J Exp Psychol Learn Memory Cogn. 20(6):1341–1354.
  • Zhang, C. and Ma, Y. eds 2012. Ensemble machine learning: methods and applications. New York, NY: Springer Science & Business Media.
  • Zheng Z, Huang W, Li S, Zeng Y. 2017. Forest fire spread simulating model using cellular automaton with extreme learning machine. Ecol Modell. 348:33–43.
  • Zhao Y, Staudenmayer J, Coull BA, Wand MP. 2006. General design Bayesian generalized linear mixed models. Statist Sci. 21(1):35–51.