1,341
Views
2
CrossRef citations to date
0
Altmetric
Article

Statistical analysis of the characteristics of typhoons approaching Japan from 2006 to 2019

ORCID Icon & ORCID Icon
Article: 2208722 | Received 28 Feb 2022, Accepted 25 Apr 2023, Published online: 08 May 2023

References

  • Ahsan MM, Özbek N. 2022. Policy considerations on hurricane induced human displacement: lessons from Cyclone Sidr and Hurricane Katrina. Trop Cyclone Res Rev. 11(2):120–130.
  • Albert J, Krishnan A, Bhaskaran PK, Singh KS. 2022. Role and influence of key atmospheric parameters in large-scale environmental flow associated with tropical cyclogenesis and ENSO in the North Indian Ocean basin. Clim Dyn. 58(1–2):17–34.
  • Aon Benfield. 2016. Global Catastrophe Recap – October 2016. [Available at http://thoughtleadership.aon.com/pages/Home.aspx?ReportYear=2016].
  • Arguez A, Hurley S, Inamdar A, Mahoney L, Sanchez-Lugo A, Yang L. 2020. Should we expect each year in the next decade (2019–28) to be ranked among the top 10 warmest years globally? Bulletin American Meteorological Society. 101(5):E655–E663.
  • Chan JC. 2005. Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorol Atmos Phys. 89(1-4):143–152.
  • Chan KT. 2019. Are global tropical cyclones moving slower in a warming climate? Environ Res Lett. 14(10):104015.
  • Cox D, Arikawa T, Barbosa A, Guannel G, Inazu D, Kennedy A, Li Y, Mori N, Perry K, Prevatt D, et al. 2019. Hurricanes Irma and Maria post-event survey in US Virgin Islands. Coastal Eng J. 61(2):121–134.
  • Fudeyasu H, Iizuka S, Matsuura T. 2006. Impact of ENSO on landfall characteristics of tropical cyclones over the western North Pacific during the summer monsoon season. Geophys Res Lett. 33(21):L21815.
  • Fudeyasu H, Shimada U, Oikawa Y, Eito H, Wada A, Yoshida R, Horinouchi T. 2022. Contributions of the Large-Scale Environment to the Typhoon Genesis of Faxai (2019). Journal of the Meteorological Society of Japan. 100(4):617–630.
  • Gall M, Cutter SL. 2019. 2005 events and outcomes: hurricane Katrina and beyond. In: Emergency management. Abingdon: Routledge; p. 191–217.
  • Gao S, Chen Z, Zhang W. 2018. Impacts of tropical North Atlantic SST on western North Pacific landfalling tropical cyclones. J Climate. 31(2):853–862.
  • Girishkumar MS, Thanga Prakash VP, Ravichandran M. 2015. Influence of Pacific Decadal Oscillation on the relationship between ENSO and tropical cyclone activity in the Bay of Bengal during October–December. Clim Dyn. 44(11-12):3469–3479.
  • Guan S, Li S, Hou Y, Hu P, Liu Z, Feng J. 2018. Increasing threat of landfalling typhoons in the Western North Pacific between 1974 and 2013. Int J Appl Earth Obs Geoinf. 68:279–286.
  • Halverson JB, Rabenhorst T. 2013. Hurricane Sandy: the science and impacts of a superstorm. Weatherwise. 66(2):14–23.
  • Hassan MM, Ash K, Abedin J, Paul BK, Southworth J. 2020. A quantitative framework for analyzing spatial dynamics of flood events: a case study of super cyclone Amphan. Remote Sensing. 12(20):3454.
  • Hatsuzuka D, Sato T, Yoshida K, Ishii M, Mizuta R. 2020. Regional projection of tropical-cyclone-induced extreme precipitation around Japan based on large ensemble simulations. SOLA. 16(0):23–29.
  • Hornyak T. 2020. Typhoons getting stronger, making landfall more often. EOS. 101 Published on 12 August 2020.
  • Ishikawa H, Oku Y, Kim S, Takemi T, Yoshino J. 2013. Estimation of a possible maximum flood event in the Tone River basin, Japan caused by a tropical cyclone. Hydrol Process. 27(23):n/a–n/a.
  • Ito R, Takemi T, Arakawa O. 2016. A possible reduction in the severity of typhoon wind in the northern part of Japan under global warming: a case study. SOLA. 12(0):100–105.
  • Kamahori H, Arakawa O. 2018. Tropical cyclone induced precipitation over Japan using observational data. SOLA. 14(0):165–169.
  • Kanada S, Aiki H, Tsuboki K, Takayabu I. 2019. Future changes in typhoon-related precipitation in eastern Hokkaido. SOLA. 15(0):244–249.
  • Kim K, Bui L. 2019. Learning from Hurricane Maria: island ports and supply chain resilience. Int J Disaster Risk Reduct. 39:101244.
  • Kim SH, Moon IJ, Chu PS. 2020. An increase in global trends of tropical cyclone translation speed since 1982 and its physical causes. Environ Res Lett. 15(9):094084.
  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, et al. 2015. The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorological Society Japan. 93(1):5–48.
  • Kossin JP, Knapp KR, Olander TL, Velden CS. 2020. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc Natl Acad Sci USA. 117(22):11975–11980.
  • Landsea CW, Vecchi GA, Bengtsson L, Knutson TR. 2010. Impact of duration thresholds on Atlantic tropical cyclone counts. J Climate. 23(10):2508–2519.
  • Lu XQ, Yu H, Ying M, Zhao BK, Zhang S, Lin LM, Bai LN, Wan RJ. 2021. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv Atmos Sci. 38(4):690–−699.
  • Mei W, Xie SP, Primeau F, McWilliams JC, Pasquero C. 2015. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci Adv. 1(4):e1500014.
  • Mei W, Xie SP. 2016. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geosci. 9(10):753–757.
  • Mohanty S, Nadimpalli R, Osuri KK, Pattanayak S, Mohanty UC, Sil S. 2019. Role of sea surface temperature in modulating life cycle of tropical cyclones over Bay of Bengal. Trop Cyclone Res Rev. 8(2):68–83.
  • Nagata K. 2011. Quantitative precipitation estimation and quantitative precipitation forecasting by the Japan Meteorological Agency. RSMC Tokyo–Typhoon Center Technical Review. 13:37–50. Available online at: http://www.jma.go.jp/jma/ jma-eng/jma-center/rsmc-hp-pub-eg/techrev/text13-2.pdf.
  • Nayak S, Takemi T. 2019a. Quantitative estimations of hazards resulting from Typhoon Chanthu (2016) for assessing the impact in current and future climate. Hydrological Research Letters. 13(2):20–27.
  • Nayak S, Takemi T. 2019b. Dynamical downscaling of Typhoon Lionrock (2016) for assessing the resulting hazards under global warming. Journal of the Meteorological Society of Japan. 97(1):69–88.
  • Nayak S, Takemi T. 2020a. Typhoon-induced precipitation characterization over northern Japan: a case study for typhoons in 2016. Prog Earth Planet Sci. 7(1):39.
  • Nayak S, Takemi T. 2020b. Robust responses of typhoon hazards in northern Japan to global warming climate: cases of landfalling typhoons in 2016. Meteorol Appl. 27(5):e1954.
  • Padgett J, DesRoches R, Nielson B, Yashinsky M, Kwon OS, Burdette N, Tavera E. 2008. Bridge damage and repair costs from Hurricane Katrina. J Bridge Eng. 13(1):6–14.
  • Patricola CM, Camargo SJ, Klotzbach PJ, Saravanan R, Chang P. 2018. The influence of ENSO flavors on western North Pacific tropical cyclone activity. J Climate. 31(14):5395–5416.
  • Paul BK. 2010. Human injuries caused by Bangladesh’s cyclone Sidr: an empirical study. Nat Hazards. 54(2):483–495.
  • Song J, Klotzbach PJ, Duan Y. 2022. Statistical linkage between coastal El Niño–Southern Oscillation and tropical cyclone formation over the western North Pacific. Atmos Sci Lett. 23(2):e1071.
  • Song J, Klotzbach PJ, Tang J, Wang Y. 2018. The increasing variability of tropical cyclone lifetime maximum intensity. Sci Rep. 8(1):1–7.
  • Sun Y, Zhong Z, Li T, Yi L, Camargo SJ, Hu, Y Y, Liu K, Chen H, Liao Q, Shi J. 2017. Impact of ocean warming on tropical cyclone track over the western North Pacific: a numerical investigation based on two case studies. J Geophys Res Atmos. 122(16):8617–8630.
  • Takagi H, Esteban M. 2016. Statistics of tropical cyclone landfalls in the Philippines: unusual characteristics of 2013 Typhoon Haiyan. Nat Hazards. 80(1):211–222.
  • Takayabu I, Hibino K, Sasaki H, Shiogama H, Mori N, Shibutani Y, Takemi T. 2015. Climate change effects on the worst-case storm surge: a case study of Typhoon Haiyan. Environ Res Lett. 10(6):064011.
  • Takemi T, Ito R, Arakawa O. 2016a. Effects of global warming on the impacts of Typhoon Mireille (1991) in the Kyushu and Tohoku regions. Hydrological Research Letters. 10(3):81–87.
  • Takemi T, Ito R, Arakawa O. 2016b. Robustness and uncertainty of projected changes in the impacts of Typhoon Vera (1959) under global warming. Hydrological Research Letters. 10(3):88–94.
  • Takemi T, Okada Y, Ito R, Ishikawa H, Nakakita E. 2016c. Assessing the impacts of global warming on meteorological hazards and risks in Japan: philosophy and achievements of the SOUSEI program. Hydrological Research Letters. 10(4):119–125.
  • Takemi T, Unuma T. 2019. Diagnosing environmental properties of the July 2018 Heavy Rainfall event in Japan. SOLA. 15A(0):60–65.
  • Takemi T, Unuma T. 2020. Environmental factors for the development of heavy rainfall in the eastern part of Japan during Typhoon Hagibis (2019). SOLA. 16(0):30–36.
  • Takemi T, Yoshida T, Yamasaki S, Hase K. 2019. Quantitative estimation of strong winds in an urban district during Typhoon Jebi (2018) by merging mesoscale meteorological and large-eddy simulations. SOLA. 15(0):22–27.
  • Takemi T. 2019. Impacts of global warming on extreme rainfall of a slow-moving typhoon: a case study for Typhoon Talas (2011). SOLA. 15(0):125–131.
  • Unuma T, Takemi T. 2016. Characteristics and environmental conditions of quasi-stationary convective clusters during the warm season in Japan. QJR Meteorol Soc. 142(696):1232–1249.
  • Wang Q, Li J. 2022. Feedback of tropical cyclones on El Niño diversity. Part I: phenomenon. Clim Dyn. :1–16.
  • Wang Y, Rao Y, Tan ZM, Schönemann D. 2015. A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Monthly Weather Review. 143(9):3434–3453.
  • Xian S, Lin N, Hatzikyriakou A. 2015. Storm surge damage to residential areas: a quantitative analysis for Hurricane Sandy in comparison with FEMA flood map. Nat Hazards. 79(3):1867–1888.
  • Yamaguchi M, Maeda S. 2020. Slowdown of typhoon translation speeds in mid-latitudes in september influenced by the pacific decadal oscillation and global warming. J Meteorological Society Japan. 98(6):1321–1334.
  • Ying M, Zhang W, Yu H, Lu X, Feng J, Fan Y, Zhu Y, Chen D. 2014. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol. 31(2):287–301.
  • Yoshida K, Sugi M, Mizuta R, Murakami H, Ishii M. 2017. Future changes in tropical cyclone activity in high‐resolution large‐ensemble simulations. Geophys Res Lett. 44(19):9910–9917.
  • Zhan R, Wang Y, Liu Q. 2017. Salient differences in tropical cyclone activity over the western North Pacific between 1998 and 2016. J Climate. 30(24):9979–9997.
  • Zhang Q, Gu X, Li J, Shi P, Singh VP. 2018. The impact of tropical cyclones on extreme precipitation over coastal and inland areas of China and its association to ENSO. J Climate. 31(5):1865–1880.
  • Zhao H, Wang C. 2019. On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Clim Dyn. 52(1-2):275–288.