3,081
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Flood susceptibility modeling of the Karnali river basin of Nepal using different machine learning approaches

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2217321 | Received 09 Mar 2023, Accepted 19 May 2023, Published online: 08 Jun 2023

References

  • Alifu H, Hirabayashi Y, Imada Y, Shiogama H. 2022. Enhancement of river flooding due to global warming. Sci Rep. 12(1):1–6.
  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorbani MA. 2020. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: a case of Topľa basin, Slovakia. Ecol Indic. 117(June):106620.
  • Andaryani S, Nourani V, Haghighi AT, Keesstra S. 2021. Integration of hard and soft supervised machine learning for flood susceptibility mapping. J Environ Manage. 291(April):112731.
  • Antwi-Agyakwa KT, Afenyo MK, Angnuureng DB. 2023. Know to predict, forecast to warn: a review of flood risk prediction tools. Water (Basel). 15(3):427.
  • Arabameri A, Rezaei K, Cerdà A, Conoscenti C, Kalantari Z. 2019. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci Total Environ. 660:443–458.
  • Araujo JC, Dias FF. 2021. Multicriterial method of AHP analysis for the identification of coastal vulnerability regarding the rise of sea level: case study in Ilha Grande Bay, Rio de Janeiro, Brazil. Nat Hazards. 107(1):53–72.
  • Aryal D, Wang L, Adhikari TR, Zhou J, Li X, Shrestha M, Wang Y, Chen D. 2020. A model-based flood hazard mapping on the southern slope of Himalaya. Water (Switzerland). 12(2):540.
  • Askar S, Zeraat Peyma S, Yousef MM, Prodanova NA, Muda I, Elsahabi M, Hatamiafkoueieh J. 2022. Flood susceptibility mapping using remote sensing and integration of decision table classifier and metaheuristic algorithms. Water (Switzerland). 14(19):3062.
  • Baig MA, Xiong D, Rahman M, Islam MM, Elbeltagi A, Yigez B, Rai DK, Tayab M, Dewan A. 2022. How do multiple kernel functions in machine learning algorithms improve precision in flood probability mapping? Nat Hazards. 113(3):1543–1562.
  • de Brito MM, Almoradie A, Evers M. 2019. Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnerability model. Int J Geogr Inf Sci. 33(9):1788–1806.
  • Bui DT, Khosravi K, Li S, Shahabi H, Panahi M, Singh VP, Chapi K, Shirzadi A, Panahi S, Chen W, et al. 2018. New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water (Switzerland). 10(9):1210.
  • Bui DT, Pradhan B, Revhaug I, Nguyen DB, Pham HV, Bui QN. 2015. A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomatics Nat Hazards Risk. 6(3):243–271.
  • Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, et al. 2013. API design for machine learning software: experiences from the scikit-learn project, 1–15. http://arxiv.org/abs/1309.0238.
  • Chakraborty S, Mukhopadhyay S. 2019. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India. Nat Hazards. 99(1):247–274.
  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Modell Software. 95:229–245.
  • Chen W, Hong H, Li S, Shahabi H, Wang Y, Wang X, Ahmad B. B. 2019. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J Hydrol (Amst). 575(February):864–873.
  • Chollet F. 2015. Keras. GitHub. https://github.com/fchollet/keras.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ. 651(Pt 2):2087–2096.
  • Costache R, Popa MC, Tien Bui D, Diaconu DC, Ciubotaru N, Minea G, Pham QB. 2020. Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. J Hydrol (Amst). 585:124808.
  • Dhakal S. 2013. Flood hazard in Nepal and new approach of risk reduction. Int J Landslide Environ. 1(1):13–14.
  • Diaconu DC, Costache R, Popa MC. 2021. An overview of flood risk analysis methods. Water (Switzerland). 13(4):474.
  • Dingle EH, Creed MJ, Sinclair HD, Gautam D, Gourmelen N, Borthwick AGL, Attal M. 2020. Dynamic flood topographies in the Terai region of Nepal. Earth Surf Process Landforms. 45(13):3092–3102.
  • Dixit 2011. Climate Change in Nepal : Impacts and Adaptive. 1–8. www.worldresourcesreport.org/responses/climate-change-nepal-impacts-and-adaptive-strategies.
  • DMG 1994. Geological Map of Nepal. https://www.dmg.gov.np/maps.
  • Dodangeh E, Panahi M, Rezaie F, Lee S, Tien Bui D, Lee CW, Pradhan B. 2020. Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. J Hydrol. 590(July):125423.
  • Dtissibe FY, Ari AAA, Titouna C, Thiare O, Gueroui AM. 2020. Flood forecasting based on an artificial neural network scheme. Nat Hazards. 104(2):1211–1237.
  • Fabian P, Michel V, Varoquaux G, Thirion B, Dubourg V, Passos A, Pedregosa V, Perrot M, Grisel Oliviergrisel O, Blondel M, et al. 2011. Scikit-learn: machine learning in Python. J Machine Learn Res. 12(Oct):2825–2830. http://scikit-learn.sourceforge.net.
  • Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 37(12):4302–4315.
  • Fu M, Fan T, Ding Z, Salih SQ, Al-Ansari N, Yaseen ZM. 2020. Deep learning data-intelligence model based on adjusted forecasting window scale: application in daily streamflow simulation. IEEE Access. 8:32632–32651.
  • Gaire S, Delgado RC, González PA. 2015. Disaster risk profile and existing legal framework of Nepal: floods and landslides. Risk Manag Healthc Policy. 8:139–149.
  • Ghosh S, Saha S, Bera B. 2022. Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan foreland basin. Nat Hazards Res. 2(4):363–374.
  • Gudiyangada Nachappa T, Tavakkoli Piralilou S, Gholamnia K, Ghorbanzadeh O, et al. 2020. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol (Amst). 590:125275.
  • Gupta N, Dahal S, Kumar A, Kumar C, Kumar M, Maharjan A, Mishra D, Mohanty A, Navaraj A, Pandey S, et al. 2021. Rich water, poor people: potential for transboundary flood management between Nepal and India. Curr Res Environ Sustain. 3:100031.
  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S. 2013. Global flood risk under climate change. Nat Clim Change. 3(9):816–821.
  • Ihlen V, Zanter K. 2019. Landsat 8 (L8) Data Users Handbook. Department of the Interior, EROS, Sioux Falls, South Dakota: U.S. Geological Survey. Version 5, https://www.usgs.gov/media/files/landsat-8-data-users-handbook
  • Ives JD, Shrestha RB, Mool PK. 2010. Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment. Kathmandu: Inernational Centre for Integrated Mountain Development (ICIMOD).
  • Janizadeh S, Avand M, Jaafari A, Phong TV, Bayat M, Ahmadisharaf E, Prakash I, Pham BT, Lee S. 2019. Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran. Sustainability. 11(19):5426.
  • Khatakho R, Talchabhadel R, Thapa BR. 2021. Evaluation of different precipitation inputs on streamflow simulation in Himalayan River basin. J Hydrol (Amst). 599(April):126390.
  • Khatiwada KR, Pandey VP. 2019. Characterization of hydro-meteorological drought in Nepal Himalaya: a case of Karnali River Basin. Weather Clim Extrem. 26(November):100239.
  • Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR. 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards. 83(2):947–987.
  • Khosravi K, Panahi M, Golkarian A, Keesstra SD, Saco PM, Bui DT, Lee S. 2020. Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J Hydrol (Amst). 591:125552.
  • Khosravi K, Pourghasemi HR, Chapi K, Bahri M. 2016. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ Monit Assess. 188(12):656.
  • Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan B, Dou J, Ly HB, Gróf G, Ho HL, et al. 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol (Amst). 573(March):311–323.
  • Liu J, Xiong J, Cheng W, Li Y, Cao Y, He Y. 2021. Assessment of flood susceptibility using support vector machine in the belt and road region. (May):1–37.
  • Li X, Yan D, Wang K, Weng B, Qin T, Liu S. 2019. Flood risk assessment of global watersheds based on multiple machine learning models. Water (Switzerland). 11(8):1654.
  • MacClune K, Venkateswaran K, ISET-International, Dixit KM, Yadav S, maharjan R, and Zurich Insurance GroupNepalKMKV, ISET-Nepal, Sumit Dugar, Practical Action Nepal. 2014. Risk Nexus Urgent case for recovery: what we can learn. Zurich: Zurich Insurance Company Ltd.
  • Mehravar S, Razavi-Termeh SV, Moghimi A, Ranjgar B, Foroughnia F, Amani M. 2023. Flood susceptibility mapping using multi-temporal SAR imagery and novel integration of nature-inspired algorithms into support vector regression. J Hydrol (Amst). 617(PC):129100.
  • Merz B, Blöschl G, Vorogushyn S, Dottori F, Aerts JCJH, Bates P, Bertola M, Kemter M, Kreibich H, Lall U, et al. 2021. Causes, impacts and patterns of disastrous river floods. Nat Rev Earth Environ. 2(9):592–609.
  • Meyer H, Reudenbach C, Wöllauer S, Nauss T. 2019. Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction. Ecol Modell. 411(March):108815.
  • Mishra A, Mukherjee S, Merz B, Singh VP, Wright DB, Villarini G, Paul S, Kumar DN, Khedun CP, Niyogi D, et al. 2022. An overview of flood concepts, challenges, and future directions. J Hydrol Eng. 27(6):1–30.
  • MoHA 2018. Ministry of Home Affairs, Disaster Risk Reduction National Strategic Plan of Action 2018–2030, Nepal.
  • MoHA 2019. Nepal Disaster Report 2019. Kathmandu. http://drrportal.gov.np.
  • Mojaddadi H, Pradhan B, Nampak H, Ahmad N, Ghazali A. b. 2017. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat Nat Hazards Risk. 8(2):1080–1102.
  • Mosavi A, Ozturk P, Chau KW. 2018. Flood prediction using machine learning models: literature review. Water (Switzerland). 10(11):1536.
  • NASA. 2022. Aster Global Digital Elevation Model V003. National Aeronautics and Space Administration.
  • Nguyen HD. 2022. Spatial modeling of flood hazard using machine learning and GIS in Ha Tinh province, Vietnam. J Water Climate Change. 14(1):200–222.
  • Pangali Sharma TP, Zhang J, Koju UA, Zhang S, Bai Y, Suwal MK. 2019. Review of flood disaster studies in Nepal: a remote sensing perspective. Int J Disaster Risk Reduct. 34(9):18–27.
  • Panthi J, Dahal P, Shrestha M, Aryal S, Krakauer N, Pradhanang S, Lakhankar T, Jha A, Sharma M, Karki R. 2015. Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate. 3(1):210–226.
  • Pekel J-F, Cottam A, Gorelick N, Belward A. 2017. Global Surface Water Explorer dataset.
  • Pourghasemi HR, Kariminejad N, Amiri M, Edalat M, Zarafshar M, Blaschke T, Cerda A. 2020. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci Rep. 10(1):1–11.
  • Rahman M, Ningsheng C, Islam MM, Dewan A, Iqbal J, Washakh RMA, Shufeng T. 2019. Flood susceptibility assessment in Bangladesh using machine learning and multi-criteria decision analysis. Earth Syst Environ. 3(3):585–601.
  • Rahmati O, Darabi H, Panahi M, Kalantari Z, Naghibi SA, Ferreira CSS, Kornejady A, Karimidastenaei Z, Mohammadi F, Stefanidis S, et al. 2020. Development of novel hybridized models for urban flood susceptibility mapping. Sci Rep. 10(1):1–19.
  • Rai RK, van den Homberg MJC, Ghimire GP, McQuistan C. 2020. Cost-benefit analysis of flood early warning system in the Karnali River Basin of Nepal. Int J Disaster Risk Reduct. 47:101534.
  • Rakhal B, Adhikari TR, Sharma S, Ghimire GR. 2021. Assessment of channel shifting of Karnali Megafan in Nepal using remote sensing and GIS. Ann GIS. 27(2):177–188.
  • Ranjgar B, Razavi-Termeh SV, Foroughnia F, Sadeghi-Niaraki A, Perissin D. 2021. Land subsidence susceptibility mapping using persistent scatterer SAR interferometry technique and optimized hybrid machine learning algorithms. Remote Sens (Basel). 13(7):1326.
  • Rentschler J, Salhab M, Jafino BA. 2022. Flood exposure and poverty in 188 countries. Nat Commun. 13(1):1–11.
  • Richman R, Wüthrich M. v. 2020. Nagging predictors. Risks. 8(3):83.
  • Schmidt L, Heße F, Attinger S, Kumar R. 2020. Challenges in applying machine learning models for hydrological inference: a case study for flooding events across Germany. Water Resour Res. 56(5):e2019WR025924.
  • Seydi ST, Kanani-Sadat Y, Hasanlou M, Sahraei R, Chanussot J, Amani M. 2023. Comparison of machine learning algorithms for flood susceptibility mapping. Remote Sens (Basel). 15(1):192.
  • Shafapour Tehrany M, Shabani F, Neamah Jebur M, Hong H, Chen W, Xie X. 2017. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomat Natural Hazards Risk. 8(2):1538–1561.
  • Shafizadeh-Moghadam H, Valavi R, Shahabi H, Chapi K, Shirzadi A. 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J Environ Manage. 217:1–11.
  • Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ, Geertsema M, Khosravi K, Amini A, Bahrami S, et al. 2020. Flood detection and susceptibility mapping using Sentinel-1 remote sensing data and a machine learning approach: hybrid intelligence of bagging ensemble based on K-Nearest Neighbor classifier. Remote Sens (Basel). 12(2):266.
  • Shreevastav BB, Tiwari KR, Mandal RA, Singh B. 2022. Flood risk modeling in southern Bagmati corridor, Nepal” (a study from Sarlahi and Rautahat, Nepal). Progress Disaster Sci. 16(November):100260.
  • Shrestha BR, Rai RK, Marasini S. 2020. Review of flood hazards studies in Nepal. Geog Base. 7:24–32.
  • Shrestha N. 2020. Detecting multicollinearity in regression analysis. AJAMS. 8(2):39–42.
  • Sinclair HD, Brown S, Adhikari BR, Attal M, Borthwick A, Budimir M, Creed M, Dingle EH, Dugar S, Gautam D, et al. 2017. Improving understanding of flooding and resilience in the Terai, Nepal: 1–5. https://infohub.practicalaction.org/oknowledge/handle/11283/620609.
  • Survey USG 2022. Landsat Level-1 data. https://www.usgs.gov/land-resources/nli/landsat.
  • Tabari H. 2020. Climate change impact on flood and extreme precipitation increases with water availability. Sci Reports 10(1):1–10.
  • Talchabhadel R, Karki R, Thapa BR, Maharjan M, Parajuli B. 2018. Spatio-temporal variability of extreme precipitation in Nepal. Int J Climatol. 38(11):4296–4313.
  • Talukdar S, Ghose B, Shahfahad, Salam R, Mahato S, Pham QB, Linh NTT, Costache R, Avand M. 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch Environ Res Risk Assess. 34(12):2277–2300.
  • Tang X, Li J, Liu M, Liu W, Hong H. 2020. Flood susceptibility assessment based on a novel random Naïve Bayes method: A comparison between different factor discretization methods. Catena (Amst). 190(September):104536.
  • Team (NCVST) NCVS 2009. Through the eyes of the vulnerability climate change induced uncertainties and Kathmandu.
  • Tehrany MS, Jones S, Shabani F. 2019. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena (Amst). 175:174–192.
  • Tehrany MS, Kumar L, Shabani F. 2019. A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: brisbane, Australia. PeerJ. 7:e7653.
  • Tehrany MS, Pradhan B, Jebur MN. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol (Amst). 512:332–343.
  • Tehrany MS, Pradhan B, Jebur MN. 2015. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Environ Res Risk Assess. 29(4):1149–1165.
  • Tehrany MS, Pradhan B, Mansor S, Ahmad N. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena (Amst). 125:91–101.
  • Thapa S, Shrestha A, Lamichhane S, Adhikari R, Gautam D. 2020. Catchment-scale flood hazard mapping and flood vulnerability analysis of residential buildings: the case of Khando River in eastern Nepal. J Hydrol: Reg Stud. 30:100704.
  • Towfiqul Islam ARM, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front. 12(3):101075.
  • UNDRR 2019. Disaster risk reduction in Nepal. Bangkok: UN Office for Disaster Risk Reduction and Asian Disaster Prevention Center.
  • United Nations 2015. Sendai Framework for Disaster Risk Reduction 2015-2030. 69th session of the General Assembly. World Conference on Natural Disaster Reduction. 08955(June):24. http://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_69_283.pdf.
  • Winsemius HC, Aerts JCJH, Van Beek LPH, Bierkens MFP, Bouwman A, Jongman B, Kwadijk JCJ, Ligtvoet W, Lucas PL, Van Vuuren DP, et al. 2016. Global drivers of future river flood risk. Nature Clim Change. 6(4):381–385.
  • Yousefi S, Mirzaee S, Keesstra S, Surian N, Pourghasemi HR, Zakizadeh HR, Tabibian S. 2018. Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology. 304:30–39.
  • Yousefi S, Pourghasemi HR, Rahmati O, Keesstra S, Emami SN, Hooke J. 2021. Geomorphological change detection of an urban meander loop caused by an extreme flood using remote sensing and bathymetry measurements (a case study of Karoon River, Iran). J Hydrol (Amst). 597:125712.
  • Youssef AM, Pradhan B, Dikshit A, Mahdi AM. 2022. Comparative study of convolutional neural network (CNN) and support vector machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt. Geocarto Int. 37(26):11088–11115.