824
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An ensemble deep-learning framework for landslide susceptibility assessment using multiple blocks: a case study of Wenchuan area, China

, , , , , , & show all
Article: 2221771 | Received 22 Dec 2022, Accepted 02 Apr 2023, Published online: 21 Jul 2023

References

  • Aditian A, Kubota T, Shinohara Y. 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology. 318:101–111. doi:10.1016/j.geomorph.2018.06.006.
  • Amato G, Eisank C, Castro-Camilo D, Lombardo L. 2019. Accounting for covariate distributions in slope-unit-based landslide susceptibility models. A case study in the alpine environment. Eng Geol. 260:105237. doi:10.1016/j.enggeo.2019.105237.
  • Chowdhuri I, Pal SC, Chakrabortty R, Malik S, Das B, Roy R, Sen K. 2021a. Spatial prediction of landslide susceptibility using projected storm rainfall and land use in Himalayan region. Bull Eng Geol Environ. 80(7):5237–5258. doi:10.1007/s10064-021-02252-z.
  • Chowdhuri I, Pal SC, Chakrabortty R, Malik S, Das B, Roy R. 2021b. Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya. Nat Hazards. 107(1):697–722. doi:10.1007/s11069-021-04601-3.
  • Dai FC, Lee CF. 2001. Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Can Geotech J. 38(5):911–923. doi:10.1139/t01-021.
  • Dou J, Yamagishi H, Pourghasemi HR, Yunus AP, Song X, Xu Y, Zhu Z. 2015. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards. 78(3):1749–1776. doi:10.1007/s11069-015-1799-2.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C, Han Z, Pham BT. 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. 17(3):641–658. doi:10.1007/s10346-019-01286-5.
  • Fang Z, Wang Y, Peng L, Hong H. 2021. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int J Geogr Inf Sci. 35(2):321–347. doi:10.1080/13658816.2020.1808897.
  • Feizizadeh B, Roodposhti MS, Jankowski P, Blaschke T. 2014. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput Geosci. 73:208–221. doi:10.1016/j.cageo.2014.08.001.
  • Ghorbanzadeh O, Crivellari A, Ghamisi P, Shahabi H, Blaschke T. 2021. A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan). Sci Rep. 11(1):1–20. doi:10.1038/s41598-021-94190-9.
  • Ghorbanzadeh O, Rostamzadeh H, Blaschke T, Gholaminia K, Aryal J. 2018. A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping. Nat Hazards. 94(2):497–517. doi:10.1007/s11069-018-3449-y.
  • Ghorbanzadeh O, Xu Y, Ghamis P, Kopp M, Kreil D. 2022. Landslide4sense: reference benchmark data and deep learning models for landslide detection. IEEE Trans Geosci Remote Sensing. 60:1–17. doi:10.1109/TGRS.2022.3215209.
  • Gudiyangada Nachappa T, Kienberger S, Meena SR, Hölbling D, Blaschke T. 2020. Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomat Nat Haz Risk. 11(1):572–600. doi:10.1080/19475705.2020.1736190.
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. IEEE Comput Vision Pattern Recogn:770–778. doi:10.1109/cvpr.2016.90.
  • Huang Y, Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. CATENA. 165:520–529. doi:10.1016/j.catena.2018.03.003.
  • Jaydhar AK, Pal SC, Saha A, Islam ARMT, Ruidas D. 2022. Hydrogeochemical evaluation and corresponding health risk from elevated arsenic and fluoride contamination in recurrent coastal multi-aquifers of eastern India. J Clean Prod. 369:133150. doi:10.1016/j.jclepro.2022.133150.
  • Korzh O, Cook G, Andersen T, Serra E. 2017. Stacking approach for CNN transfer learning ensemble for remote sensing imagery. IEEE Intell Syst Conf:599–608. doi:10.1109/intellisys.2017.8324356.
  • Li B, Lima D. 2021. Facial expression recognition via ResNet-50. Int J Cogn Comput Eng. 2:57–64. doi:10.1016/j.ijcce.2021.02.002.
  • Li J, Wang W, Chen G, Han Z. 2022. Spatiotemporal assessment of landslide susceptibility in Southern Sichuan, China using SA-DBN, PSO-DBN and SSA-DBN models compared with DBN model. Adv Space Res. 69(8):3071–3087. doi:10.1016/j.asr.2022.01.043.
  • Li Y, He J, Chen F, Han Z, Wang W, Chen G, Huang J. 2021. Generation of homogeneous slope units using a novel object-oriented multi-resolution segmentation method. Water. 13(23):3422. doi:10.3390/w13233422.
  • Li Y, Huang J, Pu H, Han Z, Li W, Yan B. 2017. Semiautomatic landslide detection using remote sensing and slope units. Transportation Res Record. 2604(1):104–110. doi:10.3141/2604-13.
  • Lv L, Chen T, Dou J, Plaza A. 2022. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. Int J Appl Earth Obs. 108:102713. doi:10.1016/j.jag.2022.102713.
  • Pal SC, Chowdhuri I. 2019. GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India. SN Appl Sci. 1(5):1–25. doi:10.1007/s42452-019-0422-7.
  • Pal SC, Ruidas D, Saha A, Islam ARMT, Chowdhuri I. 2022. Application of novel data-mining technique-based nitrate concentration susceptibility prediction approach for coastal aquifers in India. J Clean Prod. 346:131205. doi:10.1016/j.jclepro.2022.131205.
  • Panahi M, Rahmati O, Rezaie F, Lee S, Mohammadi F, Conoscenti C. 2022. Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates. CATENA. 208:105779. doi:10.1016/j.catena.2021.105779.
  • Phong LT, Phuong TT. 2019. Privacy-preserving deep learning via weight transmission. IEEE Trans Inform Forensic Secur. 14(11):3003–3015. doi:10.1109/TIFS.2019.2911169.
  • Ran H, Wen S, Shi K, Huang T. 2021. Stable and compact design of Memristive GoogLeNet neural network. Neurocomputing. 441:52–63. doi:10.1016/j.neucom.2021.01.122.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth-Sci Rev. 180:60–91. doi:10.1016/j.earscirev.2018.03.001.
  • Rossi M, Guzzetti F, Salvati P, Donnini M, Napolitano E, Bianchi C. 2019. A predictive model of societal landslide risk in Italy. Earth-Sci Rev. 196:102849. doi:10.1016/j.earscirev.2019.04.021.
  • Ruidas D, Chakrabortty R, Islam ARMT, Saha A, Pal SC. 2022a. A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environ Earth Sci. 81(5):145. doi:10.1007/s12665-022-10269-0.
  • Ruidas D, Pal SC, Islam ARMT, Saha A. 2021. Characterization of groundwater potential zones in water-scarce hardrock regions using data driven model. Environ Earth Sci. 80(24):1–18. doi:10.1007/s12665-021-10116-8.
  • Ruidas D, Pal SC, Saha A, Chowdhuri I, Shit M. 2022b. Hydrogeochemical characterization based water resources vulnerability assessment in India’s first Ramsar site of Chilka lake. Mar Pollut Bull. 184:114107. doi:10.1016/j.marpolbul.2022.114107.
  • Ruidas D, Pal SC, Towfiqul Islam ARM, Saha A. 2022c. Hydrogeochemical evaluation of groundwater aquifers and associated health hazard risk mapping using ensemble data driven model in a water scares plateau region of eastern India. Expo Health. 15(1):113–131. doi:10.1007/s12403-022-00480-6.
  • Saha A, Saha S. 2020. Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India. Remote Sens Appl: Soc Environ. 19:100323. doi:10.1016/j.rsase.2020.100323.
  • Saha S, Arabameri A, Saha A, Blaschke T, Ngo PTT, Nhu VH, Band SS. 2021. Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation method. Sci Total Environ. 764:142928. doi:10.1016/j.scitotenv.2020.142928.
  • Shahri AA, Spross J, Johansson F, Larsson S. 2019. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. CATENA. 183:104225. doi:10.1016/j.catena.2019.104225.
  • Sun D, Shi S, Wen H, Xu J, Zhou X, Wu J. 2021a. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for landslide susceptibility mapping. Geomorpholopy. 379:107623. doi:10.1016/j.geomorph.2021.107623.
  • Sun D, Wen H, Wang D, Xu J. 2020. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology. 362:107201. doi:10.1016/j.geomorph.2020.107201.
  • Sun D, Xu J, Wen H, Wang D. 2021b. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest. Eng Geo. 281:105972. doi:10.1016/j.enggeo.2020.105972.
  • Van Dao D, Jaafari A, Bayat M, Mafi-Gholami D, Qi C, Moayedi H, Phong TV, Ly H, Le T, Trinh PT, et al. 2020. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. CATENA. 188:104451. doi:10.1016/j.catena.2019.104451.
  • Wang G, Hao J, Ma J, Jiang H. 2011. A comparative assessment of ensemble learning for credit scoring. Expert Syst Appl. 38(1):223–230. doi:10.1016/j.eswa.2010.06.048.
  • Wang H, Zhang L, Luo H, He J, Cheung RWM. 2021a. AI-powered landslide susceptibility assessment in Hong Kong. Eng Geol. 288:106103. doi:10.1016/j.enggeo.2021.106103.
  • Wang X, Li S, Liu H, Liu L, Liu Y, Zeng S, Tang Q. 2021b. Landslide susceptibility assessment in Wenchuan County after the 5.12 magnitude earthquake. Bull Eng Geol Environ. 80(7):5369–5390. doi:10.1007/s10064-021-02280-9.
  • Wang Y, Fang Z, Hong H. 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci Total Environ. 666:975–993. doi:10.1016/j.scitotenv.2019.02.263.
  • Wang Y, Fang Z, Wang M, Peng L, Hong H. 2020a. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput Geosci-UK. 138:104445. doi:10.1016/j.cageo.2020.104445.
  • Wang Y, Sun D, Wen H, Zhang H, Zhang F. 2020b. Comparison of random forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang County (Chongqing, China). IJERPH. 17(12):4206. doi:10.3390/ijerph17124206.
  • Xiao L, Zhang Y, Peng G. 2018. Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway. Sensors. 18(12):4436. doi:10.3390/s18124436.
  • Yuan X, Liu C, Nie R, Yang Z, Li W, Dai X, Cheng J, Zhang J, Ma L, Fu X, et al. 2022. A comparative analysis of certainty factor-based machine learning methods for collapse and landslide susceptibility mapping in Wenchuan County, China. Remote Sens-Basel. 14(14):3259. doi:10.3390/rs14143259.
  • Zhang H, Song Y, Xu S, He Y, Li Z, Yu X, Liang Y, Wu W, Wang Y. 2022. Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: a case study of Wanzhou section of the Three Gorges Reservoir, China. Comput Geosci-UK. 158:104966. doi:10.1016/j.cageo.2021.104966.
  • Zhao Y, Wang R, Jiang Y, Liu H, Wei Z. 2019. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China. Eng Geo. 259:105147. doi:10.1016/j.enggeo.2019.105147.
  • Zhao Z, He Y, Yao S, Yang W, Wang W, Zhang L, Sun Q. 2022. A comparative study of different neural network models for landslide susceptibility mapping. Adv Space Res. 70(2):383–401. doi:10.1016/j.asr.2022.04.055.
  • Zhu L, Huang L, Fan L, Huang J, Huang F, Chen J, Zhang Z, Wang Y. 2020. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network. Sensors. 20(6):1576. doi:10.3390/s20061576.