478
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluating the double-kernel smoothing technique of blending TRMM and gauge data to identify flood events in the Xiangjiang River Basin, China

, , , , &
Article: 2221991 | Received 08 Nov 2022, Accepted 20 Feb 2023, Published online: 12 Jun 2023

References

  • Abdelmoneim H, Soliman MR, Moghazy HM. 2020. Evaluation of TRMM 3B42V7 and CHIRPS satellite precipitation products as an input for hydrological model over Eastern Nile Basin. Earth Syst Environ. 4(4):685–698. doi:10.1007/s41748-020-00185-3.
  • Abdelmoneim H, Soliman MR, Moghazy HM. 2022. Hydrologic assessment of the uncertainty of six remote sensing precipitation estimates driven by a distributed hydrologic model in the Blue Nile Basin. In: Sumi, T., Kantoush, S.A., Saber, M, editors. Wadi flash floods. Natural disaster science and mitigation engineering: DPRI reports. Singapore: Springer. doi:10.1007/978-981-16-2904-4_8.
  • Amorim JDS, Viola MR, Junqueira R, Oliveira VAD, Mello CRD. 2020. Evaluation of satellite precipitation products for hydrological modeling in the Brazilian Cerrado Biome. Water. 12(9):2571. doi:10.3390/w12092571.
  • Apel H, Thieken AH, Merz B, Bloschl G. 2006. A probabilistic modelling system for assessing flood risks. Nat Hazards. 38(1–2):79–100. doi:10.1007/s11069-005-8603-7.
  • Avila-Carrasco JR, Junez-Ferreira HE, Gowda PH, Steiner JL, Moriasi DN, Starks PJ, Gonzalez J, Villalobos AA, Bautista-Capetillo C. 2018. Evaluation of satellite-derived rainfall data for multiple physio-climatic regions in the Santiago river basin, Mexico. J Am Water Resour Assoc. 54(5):1068–1086. doi:10.1111/1752-1688.12672.
  • Azmat M, Choi M, Kim TW, Liaqat UW. 2016. Hydrological modeling to simulate streamflow under changing climate in a scarcely gauged cryosphere catchment. Environ Earth Sci. 75(3):186. doi:10.1007/s12665-015-5059-2.
  • Beria H, Nanda T, Bisht DS, Chatterjee C. 2017. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a Pan-India scale. Hydrol Earth Syst Sci. 21(12):6117–6134. doi:10.5194/hess-21-6117-2017.
  • Bi S, Bi S, Chen D, Pan J, Wang J. 2017. A double-smoothing algorithm for integrating satellite precipitation products in areas with sparsely distributed in situ networks. IJGI. 6(1):28. doi:10.3390/ijgi6010028.
  • Boulange J, Hanasaki N, Yamazaki D, Pokhrel Y. 2021. Role of dams in reducing global flood exposure under climate change. Nat Commun. 12(1):417. doi:10.1038/s41467-020-20704-0.
  • Busker T, de Roo A, Gelati E, Schwatke C, Adamovic M, Bisselink B, Pekel J, Cottam A. 2019. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol Earth Syst Sci. 23(2):669–690. doi:10.5194/hess-23-669-2019.
  • Camici S, Ciabatta L, Massari C, Brocca L. 2018. How reliable are satellite precipitation estimates for driving hydrological models: a verification study over the Mediterranean area. J Hydrol. 563:950–961. doi:10.1016/j.jhydrol.2018.06.067.
  • Dottori F, Salamon P, Bianchi A, Alfieri L, Hirpa FA, Feyen L. 2016. Development and evaluation of a framework for global flood hazard mapping. Adv Water Resour. 94:87–102. doi:10.1016/j.advwatres.2016.05.002.
  • Du J, Cheng L, Zhang Q, Yang YM, Xu W. 2019. Different flooding behaviors due to varied urbanization levels within river basin: a case study from the Xiang River Basin, China. Int J Disaster Risk Sci. 10(1):89–102. doi:10.1007/s13753-018-0195-4.
  • Fang J, Yang W, Luan Y, Du J, Lin A, Zhao L. 2019. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos Res. 223:24–38. doi:10.1016/j.atmosres.2019.03.001.
  • Faouzi E, Arioua A, Hssaisoune M, Boudhar A, Elaloui A, Karaoui I. 2022. Sensitivity analysis of CN using SCS-CN approach, rain gauges and TRMM satellite data assessment into HEC-HMS hydrological model in the upper basin of Oum Er Rbia, Morocco. Model Earth Syst Environ. 8(4):4707–4729. doi:10.1007/s40808-022-01404-8.
  • Fenta AA, Yasuda H, Shimizu K, Ibaraki Y, Haregeweyn N, Kawai T, Sewale AB, Sultan D, Ebabu K. 2018. Evaluation of satellite rainfall estimates over the Lake Tana basin at the source region of the Blue Nile River. Atmos Res. 212:43–53. doi:https://doi.org/10.1016/j.atmosres.2018.05.009.
  • Fereidoon M, Koch M, Brocca L. 2019. Predicting rainfall and runoff through satellite soil moisture data and SWAT modelling for a poorly gauged basin in Iran. Water. 11(3):594. doi:10.3390/w11030594.
  • Gilewski P, Nawalany M. 2018. Inter-comparison of rain-gauge, radar, and satellite (IMERG GPM) precipitation estimates performance for rainfall-runoff modeling in a mountainous catchment in Poland. Water. 10(11):1665. doi:10.3390/w10111665.
  • Haile AT, Tefera FT, Rientjes T. 2016. Flood forecasting in Niger-Benue basin using satellite and quantitative precipitation forecast data. Int J Appl Earth Obs. 52:475–484. doi:10.1016/j.jag.2016.06.021.
  • Hu QF, Li Z, Wang LZ, Huang Y, Wang YT, Li LJ. 2019. Rainfall spatial estimations: a review from spatial interpolation to multi-source data merging. Water. 11(3):579. doi:10.3390/w11030579.
  • Huang Y, Chen S, Cao Q, Hong Y, Wu BW, Huang MY, Qiao L, Zhang ZX, Li Z, Li WY, et al. 2013. Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water. 6(1):32–44. doi:10.3390/w6010032.
  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu GJ, Hong Y, Bowman KP, Stocker EF. 2007. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol. 8(1):38–55. doi:10.1175/JHM560.1.
  • Keller L, Rossler O, Martius O, Weingartner R. 2018. Delineation of flood generating processes and their hydrological response. Hydrol Process. 32(2):228–240. doi:10.1002/hyp.11407.
  • Kiany MSK, Masoodian SA, Balling JRC, Montazeri M. 2020. Evaluation of the TRMM 3B42 product for extreme precipitation analysis over southwestern Iran. Adv Space Res. 66(9):2094–2112. doi:10.1016/j.asr.2020.07.036.
  • Li HX, Zhang YQ, Chiew FHS, Xu SG. 2009. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J Hydrol. 370(1–4):155–162. doi:10.1016/j.jhydrol.2009.03.003.
  • Li L, Hong Y, Wang JH, Adler RF, Policelli FS, Habib S, Irwn D, Korme T, Okello L. 2009. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat Hazards. 50(1):109–123. doi:10.1007/s11069-008-9324-5.
  • Li M, Shao QX. 2010. An improved statistical approach to merge satellite rainfall estimates and raingauge data. J Hydrol. 385(1–4):51–64. doi:10.1016/j.jhydrol.2010.01.023.
  • Li RZ, Wang KC, Qi D. 2021. Event-based evaluation of the GPM multisatellite merged precipitation product from 2014 to 2018 over China: methods and results. J Geophys Res Atmos. 126(1):e2020JD033692. doi:10.1029/2020JD033692.
  • Li XH, Li Z, Lin YL. 2020. Suitability of TRMM products with different temporal resolution (3-hourly, daily, and monthly) for rainfall erosivity estimation. Remote Sens. 12(23):3924. doi:10.3390/rs12233924.
  • Long YP, Zhang YN, Ma QM. 2016. A merging framework for rainfall estimation at high spatiotemporal resolution for distributed hydrological modeling in a data-scarce area. Remote Sens. 8(7):599. doi:10.3390/rs8070599.
  • Maggioni V, Massari C. 2018. On the performance of satellite precipitation products in riverine flood modeling: a review. J Hydrol. 558:214–224. doi:10.1016/j.jhydrol.2018.01.039.
  • Manz B, Buytaert W, Zulkafli Z, Lavado W, Willems B, Alberto Robles L, Rodriguez-Sanchez J. 2016. High-resolution satellite-gauge merged precipitation climatologies of the tropical Andes. J Geophys Res Atmos. 121(3):1190–1207. doi:10.1002/2015JD023788.
  • Mei YW, Nikolopoulos EI, Anagnostou EN, Zoccatelli D, Borga M. 2016. Error analysis of satellite precipitation-driven modeling of flood events in complex alpine terrain. Remote Sens. 8(4):293. doi:10.3390/rs8040293.
  • Melo D, Xavier AC, Bianchi T, Oliveira P, Scanlon BR, Lucas MC, Wendland E. 2015. Performance evaluation of rainfall estimates by TRMM multi-satellite precipitation analysis 3B42V6 and V7 over Brazil. J Geophys Res Atmos. 120(18):9426–9436. doi:10.1002/2015JD023797.
  • Moazami S, Golian S, Kavianpour MR, Hong Y. 2013. Comparison of PERSIANN and V7 TRMM multi-satellite precipitation analysis (TMPA) products with rain gauge data over Iran. Int J Remote Sens. 34(22):8156–8171. doi:10.1080/01431161.2013.833360.
  • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol. 10(3):282–290. doi:10.1016/0022-1694(70)90255-6.
  • Park N, Kyriakidis PC, Hong S. 2017. Geostatistical integration of coarse resolution satellite precipitation products and rain gauge data to map precipitation at fine spatial resolutions. Remote Sens. 9(3):255. doi:10.3390/rs9030255.
  • Pipunic RC, Ryu D, Costelloe JF, Su C. 2015. An evaluation and regional error modeling methodology for near-real-time satellite rainfall data over Australia. J Geophys Res Atmos. 120(20):10,767–10,783. doi:10.1002/2015JD023512.
  • Prakash S, Mitra AK, Rajagopal EN, Pai DS. 2016. Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int J Climatol. 36(4):1614–1631. doi:10.1002/joc.4446.
  • Sahoo AK, Sheffield J, Pan M, Wood EF. 2015. Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens Environ. 159:181–193. doi:10.1016/j.rse.2014.11.032.
  • Sapountzis M, Kastridis A, Kazamias A, Karagiannidis A, Nikopoulos P, Lagouvardos K. 2021. Utilization and uncertainties of satellite precipitation data in flash flood hydrological analysis in ungauged watersheds. Glob. Nest J. 23:388–399. doi:10.30955/gnj.003905.
  • Stisen S, Sandholt I. 2010. Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling. Hydrol Process. 24(7):879–891. doi:10.1002/hyp.7529.
  • Su JB, Li X, Ren WW, Lu HS, Zheng DH. 2021. How reliable are the satellite-based precipitation estimations in guiding hydrological modelling in South China? J Hydrol. 602:126705. doi:10.1016/j.jhydrol.2021.126705.
  • Tan ML, Ibrahim AL, Duan Z, Cracknell AP, Chaplot V. 2015. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 7(2):1504–1528. doi:10.3390/rs70201504.
  • Tapiador FJ, Turk FJ, Petersen W, Hou AY, Garcia-Ortega E, Machado LAT, Angelis CF, Salio P, Kidd C, Huffman GJ, et al. 2012. Global precipitation measurement: methods, datasets and applications. Atmos Res. 104–105:70–97. doi:10.1016/j.atmosres.2011.10.021.
  • Try S, Tanaka S, Tanaka K, Sayama T, Oeurng C, Uk S, Takara K, Hu M, Han D. 2020. Comparison of gridded precipitation datasets for rainfall-runoff and inundation modeling in the Mekong River Basin. PLoS ONE. 15(1):e226814. doi:10.1371/journal.pone.0226814.
  • UNDRR (UN Office for Disaster Risk Reduction). 2020. The human cost of disasters: an overview of the last 20 years 2000–2019. Geneva (Switzerland): UN Office for Disaster Risk Reduction. https://reliefweb.int/report/world/human-cost-disasters-overview-last-20-years-2000-2019.
  • Varlas G, Anagnostou MN, Spyrou C, Papadopoulos A, Kalogiros J, Mentzafou A, Michaelides S, Baltas E, Karymbalis E, Katsafados P. 2018. A multi-platform hydrometeorological analysis of the flash flood event of 15 November 2017 in Attica, Greece. Remote Sens. 11(1):45. doi:10.3390/rs11010045.
  • Wanders N, Bierkens MFP, de Jong SM, de Roo A, Karssenberg D. 2014. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour Res. 50(8):6874–6891. doi:10.1002/2013WR014639.
  • Wang N, Liu WB, Sun FB, Yao ZH, Wang H, Liu WQ. 2020. Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmos Res. 234:104746. doi:10.1016/j.atmosres.2019.104746.
  • Wei G, Lü H, Crow WT, Zhu Y, Su J, Ren L, Porcù F. 2022. Comprehensive evaluation and error-component analysis of four satellite-based precipitation estimates against gauged rainfall over Mainland China. Adv Meteorol. 2022:1–29. doi:10.1155/2022/9070970.
  • Wu ZY, Zhang YL, Sun ZL, Lin QX, He H. 2018. Improvement of a combination of TMPA (or IMERG) and ground-based precipitation and application to a typical region of the East China Plain. Sci Total Environ. 640–641:1165–1175. doi:10.1016/j.scitotenv.2018.05.272.
  • Yang YM, Du J, Cheng LL, Xu W. 2017. Applicability of TRMM satellite precipitation in driving hydrological model for identifying flood events: A case study in the Xiangjiang River Basin, China. Nat Hazards. 87(3):1489–1505. doi:10.1007/s11069-017-2836-0.
  • Yuan F, Wang B, Shi CX, Cui W, Zhao CX, Liu Y, Ren LL, Zhang LM, Zhu YH, Chen T, et al. 2018. Evaluation of hydrological utility of IMERG final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J Hydrol. 567:696–711. doi:10.1016/j.jhydrol.2018.06.045.
  • Zhang YR, Sun A, Sun HW, Gui DW, Xue J, Liao WH, Yan D, Zhao N, Zeng XF. 2019. Error adjustment of TMPA satellite precipitation estimates and assessment of their hydrological utility in the middle and upper Yangtze River Basin, China. Atmos Res. 216:52–64. doi:10.1016/j.atmosres.2018.09.021.
  • Zhu B, Huang YH, Zhang ZX, Kong R, Tian JX, Zhou YC, Chen S, Duan Z. 2020. Evaluation of TMPA satellite precipitation in driving VIC hydrological model over the upper Yangtze River Basin. Water. 12(11):3230. doi:10.3390/w12113230.
  • Zhu Q, Xuan WD, Liu L, Xu YP. 2016. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol Process. 30(17):3061–3083. doi:10.1002/hyp.10846.
  • Zubieta R, Getirana A, Espinoza JC, Lavado W. 2015. Impacts of satellite-based precipitation datasets on rainfall-runoff modeling of the Western Amazon Basin of Peru and Ecuador. J Hydrol. 528:599–612. doi:10.1016/j.jhydrol.2015.06.064.