2,311
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A new multivariate agricultural drought composite index based on random forest algorithm and remote sensing data developed for Sahelian agrosystems

, , , , , & show all
Article: 2223384 | Received 22 Sep 2022, Accepted 05 Jun 2023, Published online: 16 Jun 2023

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. 2018. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci Data. 5:170191. doi:10.1038/sdata.2017.191.
  • Abdourahamane ZS, Garba I, Boukary AG, Mirzabaev A. 2022. Spatiotemporal characterization of agricultural drought in the Sahel region using a composite drought index. J Arid Environ. 204:104789. doi:10.1016/j.jaridenv.2022.104789.
  • Adedeji O, Olusola A, James G, Shaba HA, Orimoloye IR, Singh SK, Adelabu S, 2020. Early warning systems development for agricultural drought assessment in Nigeria. Environ Monit Assess. 192:1–21.
  • Aiyelokun O, Ogunsanwo G, Ojelabi A, Agbede O. 2021. Gaussian Naïve Bayes Classification Algorithm for Drought and Flood Risk Reduction. In: deo R. Samui P. Kisi O. Yaseen Z. (eds) Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation. Springer Transactions in Civil and Environmental Engineering. Springer Singapore.
  • Al Shoumik BA, Khan MZ, Islam MS. 2023. characteristics of meteorological and agricultural drought indices and their dynamic relationships during the premonsoon season in drought-prone region of Bangladesh. Environ Challeng. 11:100695. doi:10.1016/j.envc.2023.100695.
  • Alahacoon N, Edirisinghe M. 2022. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat Nat Hazard Risk. 13(1):762–799. doi:10.1080/19475705.2022.2044394.
  • Alfred LdJ, Jürgen V. 2015. Analyzing the Combined Drought Indicator (CDI): demonstration and Analysis of its Evolution during Spring and Summer 2013- 2014. Vogt/Agric Agric Sci Proced. 4:222–231. doi:10.1016/j.aaspro.2015.03.026.
  • Ali M, Ghaith M, Wagdy A, Helmi AM. 2022. Development of a New Multivariate Composite Drought Index for the Blue Nile River Basin. Water. 14(6):886. doi:10.3390/w14060886.
  • Anderson MC, Zolin CA, Sentelhas PC, Hain CR, Semmens K, Tugrul Yilmaz M, Gao F, Otkin JA, Tetrault R. 2016. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts. Remote Sens Environ. 174:82–99. doi:10.1016/j.rse.2015.11.034.
  • Bageshree K. Abhishek, Kinouchi T. 2022. A multivariate drought index for seasonal agriculture drought classification in semiarid regions. Remote Sens. 14(16): 3891. doi:10.3390/rs14163891.
  • Balhane S, Driouech F, Chafki O, Manzanas R, Chehbouni A, Moufouma-Okia W. 2022. Changes in mean and extreme temperature and precipitation events from different weighted multimodel ensembles over the northern half of Morocco. Clim Dyn. 58(1–2):389–404. doi:10.1007/s00382-021-05910-w.
  • Bayissa Y, Tadesse T, Demisse G. 2019. Building A High-Resolution Vegetation Outlook Model to Monitor Agricultural Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 11(4):371. doi:10.3390/rs11040371.
  • Bezdan J, Bezdan A, Blagojević B, Mesaroš M, Pejić B, Vranešević M, Pavić D, Nikolić-Đorić E. 2019. SPEI-Based Approach to Agricultural Drought Monitoring in Vojvodina Region. Water. 11(7):1481. doi:10.3390/w11071481.
  • Biasutti M. 2019. Rainfall trends in the African Sahel: characteristics, processes, and causes. Wiley Interdiscip Rev Clim Change. 10(4):e591.
  • Bijaber N, El Hadani D, Saidi M, Svoboda M, Wardlow B, Hain Christopher, Poulsen C, Yessef M, Rochdi A. 2018. Developing a remotely sensed drought monitoring indicator for Morocco. Geosciences. 8(2):55. doi:10.3390/geosciences8020055.
  • Brandt M, Verger A, Diouf AA, Baret F, Samimi C. 2014. Local vegetation trends in the Sahel of Mali and Senegal using long time series FAPAR satellite products and field measurement (1982–2010). Remote Sens. 6(3):2408–2434. doi:10.3390/rs6032408.
  • Cammalleri C, Arias-Muñoz C, Barbosa P, de Jager A, Magni D, Masante D, Mazzeschi M, McCormick N, Naumann G, Spinoni J, et al. 2021. A revision of the Combined Drought Indicator (CDI) used in the European Drought Observatory (EDO). Nat Hazards Earth Syst Sci. 21(2):481–495. doi:10.5194/nhess-21-481-2021.
  • Cao Y, Chen S, Wang L, Zhu B, Lu T, Yu Y. 2019. An agricultural drought index for assessing droughts using a water balance method: a case study in Jilin Province, Northeast China. Remote Sens. 11(9):1066. doi:10.3390/rs11091066.
  • Chandrasekara SSK, Kwon H-H, Vithanage M, Obeysekera J, Kim T-W. 2021. Drought in South Asia: a Review of Drought Assessment and Prediction in South Asian Countries. Atmosphere. 12(3):369. doi:10.3390/atmos12030369.
  • Chen T, Zhou S, Liang C, Hagan DFT, Zeng N, Wang J, Shi T, Chen X, Dolman AJ. 2020. The Greening and Wetting of the Sahel Have Leveled off since approximately 1999 in Relation to SST. Remote Sens. 12(17):2723. doi:10.3390/rs12172723.
  • Das AC, Noguchi R, Ahamed T. 2021. An Assessment of Drought Stress in Tea Estates Using Optical and Thermal Remote Sensing. Remote Sens. 13(14):2730. doi:10.3390/rs13142730.
  • Dixit S, Jayakumar KV. 2022. Spatio‐temporal analysis of copula‐based probabilistic multivariate drought index using CMIP6 model. Int J Climatol. 42(8):4333–4350. doi:10.1002/joc.7469.
  • Du L,Tian Q,Yu T,Meng Q,Jancso T,Udvardy P,Huang Y. 2013. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int J Appl Earth Obs Geoinf. 23:245–253. doi:10.1016/j.jag.2012.09.010.
  • Du C, Chen J, Nie T, Dai C. 2022. Spatial–temporal changes in meteorological and agricultural droughts in Northeast China: change patterns, response relationships and causes. Nat Hazards. 110(1):155–173. doi:10.1007/s11069-021-04940-1.
  • Fall CMN, Lavaysse C, Kerdiles H, Dramé S, Roudier P, Gaye AT. 2021. Performance of dry and wet spells combined with remote sensing indicators for crop yield prediction in Senegal. Clim Risk Manage. 33:100331. doi:10.1016/j.crm.2021.100331.
  • Feng P, Wang L, De L, Yu Q. 2019. Machine learning-based integration of remotely sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agric Syst. 173():303–316. doi:10.1016/j.agsy.2019.03.015.
  • Flint AE, Flint AL, Thorn JH. 2014. Climate change: evaluating your local and regional water resources. US Geol. Surv.(USGS) Fact Sheet. 3098:1–6.
  • Gao Y, Gao M, Damdinsuren B, Dorjsuren M. 2021. Early drought warning based on chlorophyll fluorescence and normalized difference vegetation index in Xilingol League of China. J Appl Rem Sens. 15(03):032006. doi:10.1117/1.JRS.15.032006.
  • Ghazaryan G, Dubovyk O, Graw V, Kussul N, Schellberg J. 2020. Local-scale agricultural drought monitoring with satellite-based multisensor time-series. GIScience Remote Sens. 57(5):704–718. doi:10.1080/15481603.2020.1778332.
  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A. 2018. Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using Vegetation Health Index (VHI) in Raya and its environs, Northern Ethiopia. Environ Syst Res. 7(1):18. doi:10.1186/s40068-018-0115-z.
  • Guo H, Bao A, Liu T, Ndayisaba F, Jiang L, Zheng G, Chen T, De Maeyer P. 2019. Determining variable weights for an Optimal Scaled Drought Condition Index (OSDCI): evaluation in Central Asia. Remote Sens of Environ. 231:111220. doi:10.1016/j.rse.2019.111220.
  • Han H, Bai J, Yan J, Yang H, Ma G. 2021a. A combined drought monitoring index based on multisensor remote sensing data and machine learning. Geocarto Int. 36(10):1161–1177.
  • Han Z, Huang Q, Huang S, Leng G, Bai Q, Liang H, Wang L, Zhao J, Fang W. 2021b. Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: characteristics and potential influencing factors. Agric Water Manage. 244:106540. doi:10.1016/j.agwat.2020.106540.
  • Hanadé HI, El Mansouri L, Gadal S, Garba M, Hadria R. 2022a. Modeling agricultural drought: a review of latest advances in big data technologies. Geomat Nat Hazards Risk. 13(1):2737–2776. doi:10.1080/19475705.2022.2131471.
  • Hanadé HI, El Mansouri L, Hadria R. Emran A, Chehbouni A. 2022b. Retrospective analysis and version improvement of the satellite-based drought composite index. A Semiarid Tensift-Morocco application. Geocart Int.37(11): 3069–3090.
  • Hao C, Zhang J, Yao F. 2015. Combination of multisensor remote sensing data for drought monitoring over Southwest China. Int J Appl Earth Obs Geoinf. 35(): 270–283. doi:10.1016/j.jag.2014.09.011.
  • Hao Z, Singh VP. 2015. Drought characterization from a multivariate perspective: a review. J Hydrol. 527:668–678. doi:10.1016/j.jhydrol.2015.05.031.
  • Hara P, Piekutowska M, Niedbała G. 2021. Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data. Land. 10(6):609. doi:10.3390/land10060609.
  • Hazaymeh K, Hassan Q. 2016. Remote sensing of agricultural drought monitoring: a state of art review. AIMS Environ Sci. 3(4):604–630. doi:10.3934/environsci.2016.4.604.
  • Hendrawan VS, Kim W, Touge Y, Ke S, Komori D. 2022. A global-scale relationship between crop yield anomaly and multiscalar drought index based on multiple precipitation data. Environ Res Lett. 17(1):014037. doi:10.1088/1748-9326/ac45b4.
  • Hoang VP, Nguye MH, Do TQ, Le DN, Bui DD. 2020. A long range, energy efficient Internet of Things based drought monitoring system. IJECE. 10(2):1278–1287. doi:10.11591/ijece.v10i2.pp1278-1287.
  • Huang S, Huang Q, Chang J, Leng G, Xing L. 2015. The response of agricultural drought to meteorological drought and the influencing factors: a case study in the Wei River Basin, China. Agric Water Manage. 159:45–54. doi:10.1016/j.agwat.2015.05.023.
  • Jiang T,Su X,Zhang G,Zhang T,Wu H. 2023. Estimating propagation probability from meteorological to ecological droughts using a hybrid machine learning copula method. Hydrol Earth Syst Sci. 27(2):559–576. doi:10.5194/hess-27-559-2023.
  • Jiang R, Xie J, He H, Luo J, Zhu J. 2015. Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012. Nat Hazards. 75(3):2885–2903. doi:10.1007/s11069-014-1468-x.
  • Jiang T, Su X, Singh VP, Zhang G. 2021. A novel index for ecological drought monitoring based on ecological water deficit. Ecol Indic. 129:107804. doi:10.1016/j.ecolind.2021.107804.
  • Jiao T,Williams CA,De Kauwe MG,Schwalm CR,Medlyn BE. 2021. Patterns of post-drought recovery are strongly influenced by drought duration, frequency, post-drought wetness, and bioclimatic setting. Glob Chang Biol. 27(19):4630–4643. doi:10.1111/gcb.15788.34228866
  • Jiménez-Donaire M, Giráldez JV, Vanwalleghem T. 2020. Evaluation of Drought Stress in Cereal through Probabilistic Modeling of Soil Moisture Dynamics. Water. 12(9):2592. doi:10.3390/w12092592.
  • Kafy AA, Bakshi A, Saha M, Al Faisal A, Almulhim AI, Rahaman ZA, Mohammad P. 2023. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms. Sci Total Environ. 867:161394. doi:10.1016/j.scitotenv.2023.161394.
  • Kaur A, Sood SK. 2020a. Cloud-centric IoT-based green framework for smart drought prediction. IEEE Internet Things J. 7(2):1111–1121. doi:10.1109/JIOT.2019.2951610.
  • Kaur A, Sood SK. 2020b. Artificial intelligence-based model for drought prediction and forecasting. Computer J. 63(11):1704–1712. doi:10.1093/comjnl/bxz105.
  • Kim J-S, Park SY, Lee J-H, Chen J, Chen S, Kim T-W. 2021. Integrated Drought Monitoring and Evaluation through Multi-Sensor Satellite-Based Statistical Simulation. Remote Sens. 13(2):272. doi:10.3390/rs13020272.
  • Klein T. 2009. Comparaison des sécheresses estivales de 1976 et 2003 en Europe occidentale à l’aide d’indices climatiques. Bull Soc Géograph Liège. 53:75–86.
  • Kogan FN. 1997. Global Drought Watch from Space. Bull Amer Meteor Soc. 78(4):621–636. doi:10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2.
  • Kogan FN. 1990. Remote sensing of weather impacts on vegetation in nonhomogeneous areas. Int J Remote Sens. 11(8):1405–1419. doi:10.1080/01431169008955102.
  • Kogan FN. 1995. Application of vegetation index and brightness temperature for drought detection. Adv Sp Res. 15(11):91–100. doi:10.1016/0273-1177(95)00079-T.
  • Kukunuri AN, Murugan D, Singh D. 2022. Variance based fusion of VCI and TCI for efficient classification of agriculture drought using MODIS data. Geocarto Int. 37(10):2871–2892. doi:10.1080/10106049.2020.1837256.
  • Kulkarni SS, Wardlow BD, Bayissa YA, Tadesse T, Svoboda MD, Gedam SS. 2020. Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India. Remote Sens. 12(13):2091. doi:10.3390/rs12132091.
  • Le T, Sun C, Choy S, Kuleshov Y. 2021. Regional drought risk assessment in the Central Highlands and the South of Vietnam. Geomat Nat Hazards Risk. 12(1):3140–3159. doi:10.1080/19475705.2021.1998232.
  • Lebel T, Ali A. 2009. Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol. 375(1-2):52–64. doi:10.1016/j.jhydrol.2008.11.030.
  • Lebourgeois F. and Piedallu C. 2005. Appréhender le niveau de sécheresse dans le cadre des études stationnelles et de la gestion forestière à partir d’indices bioclimatiques. Rev For Fr 57(4):331–356.
  • Leroux L, Castets M, Baron C, Escorihuela M, Bégué A, Seen DL. 2019. Maize yield estimation in West Africa from crop process-induced combinations of multidomain remote sensing indices. Eur J Agron. 108:11–26. doi:10.1016/j.eja.2019.04.007.
  • Li J, Heap AD. 2014. Spatial interpolation methods applied in the environmental sciences: a review. Environ Model Softw. 53:173–189. doi:10.1016/j.envsoft.2013.12.008.
  • Li Q, Li P, Li H, Yu M. 2015. Drought assessment using a multivariate drought index in the Luanhe River basin of Northern China. Stoch Environ Res Risk Assess. 29(6):1509–1520. doi:10.1007/s00477-014-0982-4.
  • Li S, Xu X. 2021. Study on remote sensing monitoring model of agricultural drought based on random forest deviation correction. INMATEH. 64(2):413–422. doi:10.35633/inmateh-64-41.
  • Liu Q, Zhang S, Zhang H, Bai Y, Zhang J. 2020. Monitoring drought using composite drought indices based on remote sensing. Sci Total Environ. 711:134585. doi:10.1016/j.scitotenv.2019.134585.
  • Liu X, Zhu X, Pan Y, Bai J, Li S. 2018. Performance of different drought indices for agriculture drought in the North China Plain. J Arid Land. 10(4):507–516. doi:10.1007/s40333-018-0005-2.
  • Liu X, Zhu X, Pan Y, Li S, Liu Y, Ma Y. 2016. Agricultural drought monitoring: progress, challenges, and prospects. J Geogr Sci. 26(6):750–767. doi:10.1007/s11442-016-1297-9.
  • Loulli E, Hadjimitsis DG. 2018. Remote Sensing-Based Indices for Drought Assessment in the East Mediterranean Region," Proc. SPIE 10783, Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, 1078314. doi:10.1117/12.2325331.
  • Mansour Badamassi MB, El-Aboudi A, Gbetkom PG. 2020. A new index to better detect and monitor agricultural drought in Niger using multisensor remote sensing data. Profess Geograph. 72(3):421–432. doi:10.1080/00330124.2020.1730197.
  • McKee TB, Nj D, Kleist J. 1993. The relationship of drought frequency and duration of time scales. Eighth Conference on Applied Climatology, American Meteorological Society, Jan 17-23, 1993, Anaheim CA, p. 179–186.
  • Mishra AK, Singh P. 2010. A review of drought concepts. J Hydrol. 391(1-2):202–216. doi:10.1016/j.jhydrol.2010.07.012.
  • Mohammed L. 2008. Calcul des indicateurs de sécheresse à partir des images NOAA/AVHRR: rapport CRTS projet de mise en place d’un système d’alerte précoce à la sécheresse dans trois pays de la rive sud de la méditerranée: algérie, Maroc, et Tunisie.
  • Mokhtar A, Jalali M, He H, Al-Ansari N, Elbeltagi A, Alsafadi K, Ghassan Abdo H, Sammen S, Gyasi-Agyei Y, Rodrigo-Comino J. 2021. Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms « in. IEEE Access. 9:65503–65523. doi:10.1109/ACCESS.2021.3074305.
  • Naderi K, Moghaddasi M, Shokri A. 2022. Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function Under Climate Change. Water Resour Manage. 36(8):2865–2888. doi:10.1007/s11269-022-03186-1.
  • Nam W, Tadesse T, Wardlow B, Hayes M, Svoboda M, Hong E, Pachepsky Y, Jang M. 2018. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. Int J Remote Sens. 39(5):1548–1574. doi:10.1080/01431161.2017.1407047.
  • Neeti N, Arun Murali CM, Chowdary VM, Rao NH, Kesarwani M. 2021. Integrated meteorological drought monitoring framework using multisensor and multitemporal earth observation datasets and machine learning algorithms: a case study of central India. J Hydrol. 601:126638. doi:10.1016/j.jhydrol.2021.126638.
  • Nooni IK, Hagan DFT, Wang G, Ullah W, Li S, Lu J, Bhatti AS, Shi X, Lou D, Prempeh NA, et al. 2021. Spatiotemporal Characteristics and Trend Analysis of Two Evapotranspiration-Based Drought Products and Their Mechanisms in Sub-Saharan Africa. Remote Sens. 13(3):533. doi:10.3390/rs13030533.
  • Noureldeen N, Mao K, Mohmmed A, Yuan Z, Yang Y. 2020. Spatiotemporal Drought Assessment over Sahelian Countries from 1985 to 2015. J Meteorol Res. 34(4):760–774. doi:10.1007/s13351-020-9178-7.
  • Nugraha ASA, Kamal M, Murti SH, Widyatmanti W. 2023. Development of the triangle method for drought studies based on remote sensing images: a review. Remote Sens Appl: Soc Environ. 29:100920. doi:10.1016/j.rsase.2023.100920.
  • Palmer WC. 1965. Meteorological drought, U.S. Weather Bureau Research Paper 45. pp. 58.
  • Panthou G, Vischel T, Lebel T. 2014. Recent trends in the regime of extreme rainfall in the Central Sahel. Int J Climatol. 34(15):3998–4006. doi:10.1002/joc.3984.
  • Park JH, Lee JH, Kim TW, Kwon HH. 2019. A development of multivariate drought index using the simulated soil moisture from a GM-NHMM model. J Korea Water Resour Assoc. 52(8):545–554.
  • Patel NR, Yadav K. 2015. Monitoring spatiotemporal pattern of drought stress using integrated drought index over Bundelkhand region, India. Nat Hazards. 77(2):663–677. doi:10.1007/s11069-015-1614-0.
  • Petersen LK. 2018. Real-Time Prediction of Crop Yields from MODIS Relative Vegetation Health: a Continent-Wide Analysis of Africa. Remote Sens. 10(11):1726. doi:10.3390/rs10111726.
  • Porkka M, Wang-Erlandsson L, Destouni G, Ekman AML, Rockström J, Gordon LJ.,. 2021. Is wetter better? Exploring agriculturally relevant rainfall characteristics over four decades in the Sahel. Environ Res Lett. 16(3):035002. doi:10.1088/1748-9326/abdd57.
  • Prodhan FA, Zhang J, Yao F, Shi L, Pangali Sharma TP, Zhang D, Cao D, Zheng M, Ahmed N, MOHana HP. 2021. Deep Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data. Remote Sens. 13(9):1715. doi:10.3390/rs13091715.
  • Qaiser G, Tariq S, Adnan S, Latif M. 2021. Evaluation of a composite drought index to identify seasonal drought and its associated atmospheric dynamics in Northern Punjab, Pakistan. J Arid Environ. 185:104332. doi:10.1016/j.jaridenv.2020.104332.
  • Rahmati O,Falah F,Dayal KS,Deo RC,Mohammadi F,Biggs T,Moghaddam DD,Naghibi SA,Bui DT. 2020. Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia. Sci Total Environ. 699:134230 doi:10.1016/j.scitotenv.2019.134230.
  • Rajsekhar D, Singh VP, Mishra AK. 2015. Multivariate drought index: an information theory-based approach for integrated drought assessment. J Hydrol. 526:164–182. doi:10.1016/j.jhydrol.2014.11.031.
  • Saha S, Gogoi P, Gayen A, Paul GC. 2021. Constructing the machine learning techniques based spatial drought vulnerability index in Karnataka state of India. J Clean Prod. 314:128073. VolumeISSN 0959-6526. doi:10.1016/j.jclepro.2021.128073.
  • Saha S, Kundu B, Saha A, Mukherjee K, Pradhan B. 2023. Manifesting deep learning algorithms for developing drought vulnerability index in monsoon climate dominant region of West Bengal, India. Theor Appl Climatol. 151(1-2):891–913. doi:10.1007/s00704-022-04300-4.
  • San Emeterio JL, Lacaze B, Mering C. 2012. Détection des changements de la couverture végétale au Sahel durant la période 1982-2002 à partir des données NDVI et précipitation. Télédétection. 10(2-3):135–143.
  • Schwartz C, Ellenburg WL, Mishra V, Mayer T, Griffin R, Qamer F, Matin M, Tadesse T. 2022. A statistical evaluation of Earth-observation-based composite drought indices for a localized assessment of agricultural drought in Pakistan. Int J Appl Earth Obs Geoinf. 106:102646. doi:10.1016/j.jag.2021.102646.
  • Senapati U, Das TK. 2022. Geospatial assessment of agricultural drought vulnerability using integrated three-dimensional model in the upper Dwarakeshwar river basin in West Bengal, India. Environ Sci Pollut Res.1–28. doi:10.1007/s11356-022-23663-9.
  • Sepulcre-Canto G, Horion S, Singleton A, Carrao H, Vogt J. 2012. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat Hazards Earth Syst Sci. 12(11):3519–3531. doi:10.5194/nhess-12-3519-2012.
  • Shaikhina T, Lowe D, Dag S, Briggs D, Higgins R, Khovanova N. 2019. Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomed Signal Process Control. 52:456–462. doi:10.1016/j.bspc.2017.01.012.
  • Shamshirband S, Hashemi S, Salimi H, Samadianfard S, Asadi E, Shadkani S, Kargar K, Mosavi A, Nabipour N, Chau K-W. 2020. Predicting Standardized Streamflow index for hydrological drought using machine learning models. Eng Appl Comput Fluid Mech. 14(1):339–350. doi:10.1080/19942060.2020.1715844.
  • Sharara A, Shekede MD, Gwitira I, Masocha M, Dube T. 2022. Fine-scale multitemporal and spatial analysis of agricultural drought in agro-ecological regions of Zimbabwe. Geomat Nat Hazards Risk. 13(1):1342–1365. doi:10.1080/19475705.2022.2072774.
  • Shen R,Huang A,Li B,Guo J. 2019. Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int J Appl Earth Obs Geoinf 79:48–57. doi:10.1016/j.jag.2019.03.006.
  • Singh TP, Deshpande M, Das S, Kumbhar V. 2022. Drought pattern assessment over Marathwada, India through the development of multivariate advance drought response index. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLIII-B3-2022:1173–1180. doi:10.5194/isprs-archives-XLIII-B3-2022-1173-2022.
  • Son B, Park S, Im J, Park S, Ke Y, Quackenbush LJ. 2021. A new drought monitoring approach: vector Projection Analysis (VPA). Remote Sens Environ. 252:112145. doi:10.1016/j.rse.2020.112145.
  • Sultana MS, Gazi MY, Mia MB. 2021. Multiple indices based agricultural drought assessment in the northwestern part of Bangladesh using geospatial techniques. Environ Challenges. 4:100120. doi:10.1016/j.envc.2021.100120.
  • Sur C, Park SY, Kim T-W, Lee JH. 2019. Remote Sensing-based Agricultural Drought Monitoring using Hydrometeorological Variables. KSCE J Civ Eng. 23(12):5244–5256. doi:10.1007/s12205-019-2242-0.
  • Sutanto SJ, Van der Weert M, Blauhut V, Van Lanen HAJ. 2020. Skill of large-scale seasonal drought impact forecasts. Nat Hazards Earth Syst Sci. 20(6):1595–1608. doi:10.5194/nhess-20-1595-2020.
  • Svoboda M, Fuchs B. 2016. Handbook of Drought Indicators and Indices; World Meteorological Organization (WMO): Geneva, Switzerland, 2016.
  • Szczypta C. 2012. Hydrologie Spatiale pour le suivi des sécheresses du bassin méditerranéen. Thèse de doctorat, Ecole doctorale: SDU2E (Sciences de l’Univers, de l’Environnement et de l’Espace). 197 pages
  • Teweldebirhan TD, Uddameri V, Forghanparast F, Hernandez EA, Ekwaro-Osire S. 2019. Comparison of meteorological-and agriculture-related drought indicators across Ethiopia. Water. 11(11):2218. doi:10.3390/w11112218.
  • Tian L, Yuan S, Quiring SM. 2018. Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agric for Meteorol. 249:107–119. doi:10.1016/j.agrformet.2017.11.024.
  • Tian Q, Lu J, Chen X. 2022. A novel comprehensive agricultural drought index reflecting time lag of soil moisture to meteorology: a case study in the Yangtze River basin, China. Catena. 209:105804. doi:10.1016/j.catena.2021.105804.
  • Vicente-Serrano SM, Cabello D, Tomás-Burguera M, Martín-Hernández N, Beguería S, Azorin-Molina C, Kenawy AE. 2015. Drought Variability and Land Degradation in Semiarid Regions: assessment Using Remote Sensing Data and Drought Indices (1982–2011). Remote Sens. 7(4):4391–4423. doi:10.3390/rs70404391.
  • Wang J, Yu Y. 2021. Comprehensive drought monitoring in Yunnan Province China using multisource remote sensing data. J Mt Sci. 18(6):1537–1549. doi:10.1007/s11629-020-6333-7.
  • Waseem M, Ajmal M, Kim TW. 2015. Development of a new composite drought index for multivariate drought assessment. J Hydrol. 527:30–37. doi:10.1016/j.jhydrol.2015.04.044.
  • West CT, Moody A, Nébié EK, Sanon O. 2017. Ground-Truthing Sahelian Greening: Ethnographic and Spatial Evidence from Burkina Faso. Hum Ecol Interdiscip J. 45(1):89–101. doi:10.1007/s10745-016-9888-8.
  • Wu B, Zhang M, Zeng H, Tian F, Potgieter AB, Qin X, Yan N, Chang S, Yan Z, Dong Q, et al. 2023. Challenges and opportunities in remote sensing-based crop monitoring: a review. Natl Sci Rev. 10(4):nwac290. doi:10.1093/nsr/nwac290.
  • Wu R, Liu Y, Xing X. 2021. Evaluation of evapotranspiration deficit index for agricultural drought monitoring in North China. J Hydrol. 596:126057. doi:10.1016/j.jhydrol.2021.126057.
  • Yan H, Wang SQ, Wang JB, Lu HQ, Guo AH, Zhu ZC, Myneni RB, Shugart HH. 2016. Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982–2011 by using PDSI indices and agriculture drought survey data. J Geophys Res Atmos. 121(5):2283–2298. doi:10.1002/2015JD024285.
  • Yang X, Li YP, Huang GH, Zhang SQ. 2022. Analyzing spatial–temporal change of multivariate drought risk based on Bayesian copula: application to the Balkhash Lake basin. Theor Appl Climatol. 149(1-2):787–804. doi:10.1007/s00704-022-04062-z.
  • Yu X, Guo X, Wu Z. 2014. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 6(10):9829–9852. doi:10.3390/rs6109829.
  • Zhao X, Xia H, Liu B, Jiao W. 2022. Spatiotemporal comparison of drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 using various drought indices in google earth engine. Remote Sens. 14(7):1570. doi:10.3390/rs14071570.
  • Zhou X, Zhu X, Dong Z, Guo W. 2016. Estimation de la biomasse du blé à l‘aide d‘un algorithme de régression forestière aléatoire et de données de télédétection. Crop J. 4(3):212–219.
  • Zhuo W, Huang J, Zhang X, Sun H, Zhu D, Su W, … Liu Z. 2016. July. Comparison of Five Drought Indices for Agricultural Drought Monitoring and Impacts on Winter Wheat Yields Analysis. In 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 1-6). IEEE.