2,481
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Water depth estimation from Sentinel-2 imagery using advanced machine learning methods and explainable artificial intelligence

, , ORCID Icon, , &
Article: 2225691 | Received 15 Mar 2023, Accepted 09 Jun 2023, Published online: 27 Jun 2023

References

  • Ahmadi K, Kalantar B, Saeidi V, Harandi EKG, Janizadeh S, Ueda N. 2020. Comparison of machine learning methods for mapping the stand characteristics of temperate forests using multi-spectral Sentinel-2 data. Remote Sens. 12(18):3019. doi:10.3390/rs12183019.
  • Al-Najjar HAH, Pradhan B. 2021. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci Front. 12(2):625–637. doi:10.1016/j.gsf.2020.09.002.
  • Al-Najjar HAH, Pradhan B, Beydoun G, Sarkar R, Park HJ, Alamri A. 2022. A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset. Gondwana Res. 2:1–44. doi:10.1016/j.gr.2022.08.004.
  • Ashphaq M, Srivastava PK, Mitra D. 2021. Review of near-shore satellite derived bathymetry: classification and account of five decades of coastal bathymetry research. J Ocean Eng Sci. 6(4):340–359. doi:10.1016/j.joes.2021.02.006.
  • Caballero I, Stumpf RP. 2019. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuarine Coastal Shelf Sci. 226:106277. doi:10.1016/j.ecss.2019.106277.
  • Captain Najhan Md Said RMN, Mahmud MR, Hasan RC. 2018. Evaluating satellite-derived bathymetry accuracy from Sentinel-2A high-resolution multispectral imageries for shallow water hydrographic mapping. IOP Conf Ser: Earth Environ Sci. 169:012069. doi:10.1088/1755-1315/169/1/012069.
  • Casal G, Harris P, Monteys X, Hedley J, Cahalane C, McCarthy T. 2020. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GISci Remote Sens. 57(3):271–286. doi:10.1080/15481603.2019.1685198.
  • Cesbron G, Melet A, Almar R, Lifermann A, Tullot D, Crosnier L. 2021. Pan-European Satellite-derived coastal bathymetry—review, user needs and future services. Front Mar Sci. 8(October):1–15. doi:10.3389/fmars.2021.740830.
  • El-Kenawy ESM, Mirjalili S, Ibrahim A, Alrahmawy M, El-Said M, Zaki RM, Eid MM. 2021. Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image classification. IEEE Access. 9:36019–36037. doi:10.1109/ACCESS.2021.3061058.
  • Eugenio F, Marcello J, Mederos-Barrera A, Marqués F. 2022. High-resolution satellite bathymetry mapping: regression and machine learning-based approaches. IEEE Trans Geosci Remote Sens. 60:1–14. doi:10.1109/TGRS.2021.3135462.
  • Evagorou E, Argyriou A, Papadopoulos N, Mettas C, Alexandrakis G, Hadjimitsis D. 2022. Evaluation of satellite-derived bathymetry from high and medium-resolution sensors using empirical methods. Remote Sens. 14(3):772. doi:10.3390/rs14030772.
  • Frigato R, Silva E.A.2008. Mathematical morphology application to features extraction in digital images. https://www.semanticscholar.org/paper/MATHEMATICAL-MORPHOLOGY-APPLICATION-TO-FEATURES-IN-Frigato-Silva/82ee52912c93be75ead69db4a14bde7052be0b4f.
  • Garea AS, Heras DB, Argüello F. 2016. GPU classification of remote-sensing images using kernel ELM and extended morphological profiles. Int J Remote Sens. 37(24):5918–5935. doi:10.1080/01431161.2016.1251629.
  • Hasanpour Zaryabi E, Moradi L, Kalantar B, Ueda N, Halin AA. 2022. Unboxing the black box of attention mechanisms in remote sensing big data using XAI. Remote Sens. 14(24):6254. doi:10.3390/rs14246254.
  • Imani M, Ghassemian H. 2019. Morphology-based structure-preserving projection for spectral-spatial feature extraction and classification of hyperspectral data. IET Image Proc. 13(2):270–279. doi:10.1049/iet-ipr.2017.1431.
  • Jagalingam P, Akshaya BJ, Hegde AV. 2015. Bathymetry mapping using landsat 8 satellite imagery. Procedia Eng. 116(1):560–566. doi:10.1016/j.proeng.2015.08.326.
  • Kadiyala SP, Woo WL. 2022. Flood Prediction and Analysis on the Relevance of Features using Explainable Artificial Intelligence. August 2018, 1–13.
  • Kalantar B, Ueda N, Saeidi V, Janizadeh S, Shabani F, Ahmadi K, Shabani F. 2021. Deep neural network utilizing remote sensing datasets for flood hazard susceptibility mapping in Brisbane, Australia. Remote Sens. 13(13):2638. doi:10.3390/rs13132638.
  • Kim Y, Kim Y. 2022. Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models. Sustain Cities Soc. 79(September 2021):103677. doi:10.1016/j.scs.2022.103677.
  • Leder TD. 2020. Optimal conditions for satellite derived bathymetry (SDB)-case study of the Adriatic Sea. Proceedings of the FIG Working Week, Amsterdam, The Netherlands.
  • Licciardi G, Marpu PR, Chanussot J, Benediktsson JA. 2012. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci Remote Sens Lett. 9(3):447–451. doi:10.1109/LGRS.2011.2172185.
  • Loomis MJ. 2009. Depth derivation from the Worldview-2 satellite using hyperspectral imagery. Naval Postgraduated School. March, 1–69. Thesis and Dissertation Collection from https://calhoun.nps.edu/handle/10945/4793.
  • Lyzenga DR. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Appl Opt. 17(3):379–383. doi:10.1364/ao.17.000379.
  • Mavraeidopoulos AK, Oikonomou E, Palikaris A, Poulos S. 2019. A hybrid bio-optical transformation for satellite bathymetry modeling using Sentinel-2 imagery. Remote Sens. 11(23):2746. doi:10.3390/rs11232746.
  • Maxwell AE, Sharma M, Donaldson KA. 2021. Explainable boosting machines for slope failure spatial predictive modeling. Remote Sens. 13(24):4991. doi:10.3390/rs13244991.
  • Miller T. 2019. Explanation in artificial intelligence: insights from the social sciences. Artif Intell. 267(July):1–38. doi:10.1016/j.artint.2018.07.007.
  • Misra A, Vojinovic Z, Ramakrishnan B, Luijendijk A, Ranasinghe R. 2018. Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. Int J Remote Sens. 39(13):4431–4450. doi:10.1080/01431161.2017.1421796.
  • Mohamed H, Nadaoka K. 2017. Assessment of machine learning approaches for bathymetry mapping in shallow water environments using multispectral satellite images. Int J Geoinformatics. 13(2):1–15.
  • Mohamed H, Negm A, Zahran M, Saavedra OC. 2015. Assessment of Artificial Neural Network for bathymetry estimation using High Resolution Satellite imagery in Shallow Lakes : case Study El Burullus Lake. International Water Technology Conference, March, 434–444.
  • Mohamed H, Negm A, Zahran M, Saavedra OC, the Environmental Engineering Department, School of Energy and Environmental Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt. 2016. Bathymetry determination from high resolution satellite imagery using ensemble learning algorithms in shallow lakes: case study El-Burullus Lake. IJESD. 7(4):295–301. doi:10.7763/IJESD.2016.V7.787.
  • Mudiyanselage SSJD, Abd-Elrahman A, Wilkinson B, Lecours V. 2022. Satellite-derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters. GISci Remote Sens. 59(1):1143–1158. doi:10.1080/15481603.2022.2100597.
  • Najar MA, Benshila R, Bennioui YE, Thoumyre G, Almar R, Bergsma EWJ, Najar MA, Delvit JM, Wilson DG. 2022. Coastal bathymetry estimation from Sentinel-2 satellite imagery: comparing deep learning and physics-based approaches. Remote Sens. 14(5):1196. doi:10.3390/rs14051196.
  • Owen CA, Dick G, Whigham PA. 2020. Characterizing genetic programming error through extended bias and variance decomposition. IEEE Trans Evol Computat. 24(6):1164–1176. doi:10.1109/TEVC.2020.2990626.
  • Plaza A, Martínez P, Pérez R, Plaza J. 2003. A new method for target detection in hyperspectral imagery based on extended morphological profiles. International Geoscience and Remote Sensing Symposium (IGARSS). 6(C):3772–3774. doi:10.1109/igarss.2003.1295265.
  • Quackenbush LJ. 2004. A review of techniques for extracting linear features from imagery. Photogramm Eng Remote Sens. 70(12):1383–1392. doi:10.14358/PERS.70.12.1383.
  • Roscher R, Bohn B, Duarte MF, Garcke J. 2020. Explain it to me-facing remote sensing challenges in the bio-and geosciences with explainable machine learning. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. 5(3):817–824. doi:10.5194/isprs-annals-V-3-2020-817-2020.
  • Sagawa T, Yamashita Y, Okumura T, Yamanokuchi T. 2019. Shallow water bathymetry derived by machine learning and multitemporal satellite images. International Geoscience and Remote Sensing Symposium (IGARSS), 8222–8225. doi:10.1109/IGARSS.2019.8899043.
  • Said KAM, Jambek AB. 2021. Analysis of image processing using morphological erosion and dilation. J Phys: Conf Ser. 2071(1):012033. doi:10.1088/1742-6596/2071/1/012033.
  • Salameh E, Frappart F, Almar R, Baptista P, Heygster G, Lubac B, Raucoules D, Almeida LP, Bergsma EWJ, Capo S, et al. 2019. Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: a review. Remote Sens. 11(19):2212. doi:10.3390/rs11192212.
  • Seydi ST, Saeidi V, Kalantar B, Ueda N, Genderen JLV, Maskouni FH, Aria FA. 2022. Fusion of the Multisource Datasets for Flood Extent Mapping Based on Ensemble Convolutional Neural Network (CNN) Model.Journal of Sensors. 2022:20. https://doi.org/10.1155/2022/2887502.
  • Singh H, Roy A, Setia RK, Pateriya B. 2022. Estimation of nitrogen content in wheat from proximal hyperspectral data using machine learning and explainable artificial intelligence (XAI) approach. Model Earth Syst Environ. 8(2):2505–2511. doi:10.1007/s40808-021-01243-z.
  • Stumpf RP, Holderied K, Sinclair M. 2003. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol Oceanogr. 48(1part2):547–556. doi:10.4319/lo.2003.48.1_part_2.0547.
  • Su H, Liu H, Heyman W. 2008. Automated derivation of bathymetric information from multi-spectral satellite imagery using a non-linear inversion model. Mar Geod. 31(4):281–298. doi:10.1080/01490410802466652.
  • Tajfirouz B, Saeidi V, Khalili H, Nemati MH. 2022. Volume and rate estimations of sedimentation in Amirabad Port during period 2018-2021. ISSGE. 11(3):115–123.
  • Tjoa E, Guan C. 2021. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans Neural Netw Learn Syst. 32(11):4793–4813. doi:10.1109/TNNLS.2020.3027314.
  • Tonion F, Pirotti F, Faina G, Paltrinieri D. 2020. A machine learning approach to multispectral satellite derived bathymetry. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. V-3-2020(3):565–570. doi:10.5194/isprs-annals-V-3-2020-565-2020.
  • Wan J, Ma Y. 2021. Shallow water bathymetry mapping of Xinji Island based on multispectral satellite image using deep learning. J Indian Soc Remote Sens. 49(9):2019–2032. doi:10.1007/s12524-020-01255-9.
  • Wang L, Wu J, Zhang W, Wang L, Cui W. 2021. Efficient seismic stability analysis of embankment slopes subjected to water level changes using gradient boosting algorithms. Front Earth Sci. 9(December):1–9. doi:10.3389/feart.2021.807317.