1,182
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya

, , , , , , , , , , , & show all
Article: 2227324 | Received 24 Mar 2023, Accepted 14 Jun 2023, Published online: 07 Jul 2023

References

  • Abdo HG. 2022. Assessment of landslide susceptibility zonation using frequency ratio and statistical index: a case study of Al-Fawar basin, Tartous, Syria. Int J Environ Sci Technol. 19(4):2599–2618. doi:10.1007/s13762-021-03322-1.
  • Abdo HG, Almohamad H, Al Dughairi AA, Ali SA, Parvin F, Elbeltagi A, Costache R, Mohammed S, Al-Mutiry M, Alsafadi K. 2022. Spatial implementation of frequency ratio, statistical index and index of entropy models for landslide susceptibility mapping in Al-Balouta river basin, Tartous Governorate, Syria. Geosci Lett. 9(1):45. doi:10.1186/s40562-022-00256-5.
  • Anbalagan R, Singh B. 1996. Landslide hazard and risk assessment mapping of mountainous terrains—a case study from Kumaun Himalaya, India. Eng Geol. 43(4):237–246. doi:10.1016/S0013-7952(96)00033-6.
  • Atkinson PM, Massari R. 1998. Generalized linear modeling of susceptibility to land sliding in the central.
  • Banavar JR, Maritan A, Volkov I. 2010. Applications of the principle of maximum entropy: from physics to ecology. J Phys Condens Matter. 22(6):063101. doi:10.1088/0953-8984/22/6/063101.
  • Barnard PL, Owen LA, Sharma MC, Finkel RC. 2001. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology. 40(1–2):21–35. doi:10.1016/S0169-555X(01)00035-6.
  • Basharat M, Khan JA, Abdo HG, Almohamad H. 2023. An integrated approach based landslide susceptibility mapping: case of Muzaffarabad region, Pakistan. Geomatics Nat Hazards Risk. 14(1):2210255. doi:10.1080/19475705.2023.2210255.
  • Benesty J, Chen J, Huang Y, Cohen I. 2009. Pearson correlation coefficient. In Noise reduction in speech processing. Berlin, Heidelberg: Springer; p. 1–4.
  • Bhasin R, Grimstad E, Larsen JO, Dhawan AK, Singh R, Verma SK, Venkatachalam K. 2002. Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya. Eng Geol. 64(4):351–368. doi:10.1016/S0013-7952(01)00096-5.
  • Bordoni M,Galanti Y,Bartelletti C,Persichillo MG,Barsanti M,Giannecchini R,Avanzi GD,Cevasco A,Brandolini P,Galve JP, et al. 2020. The influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive models. CATENA. 193:104630.doi:10.1016/j.catena.2020.104630.
  • Breiman L. 2001. Random Forests. Mach Learn. 45(1):5–32. doi:10.1023/A:1010933404324.
  • Brenning A. 2005. Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci. 5(6):853–862. doi:10.5194/nhess-5-853-2005.
  • Brown JL. 2014. SDM toolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol. 5(7):694–700. doi:10.1111/2041-210X.12200.
  • Brownlee J. 2021. Ensemble learning algorithms with Python: Make better predictions with bagging, boosting, and stacking. Machine Learning Mastery.
  • Cantor SB,Sun CC,Tortolero-Luna G,Richards-Kortum R,Follen M. 1999. A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. J Clin Epidemiol. 52(9):885–892. doi:10.1016/s0895-4356(99)00075-x. 10529029
  • Chen W,Pourghasemi HR,Kornejady A,Zhang N. 2017. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma. 305:314–327. doi:10.1016/j.geoderma.2017.06.020.
  • Chen W,Sun Z,Han J. 2019. Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Applied Sciences. 9(1):171.doi:10.3390/app9010171.
  • Clark JD, Dunn JE, Smith KG. 1993. A multivariate model of female black bear habitat use for a geographic information
  • Cortes C, Vapnik V. 1995. Support-vector networks. Mach Learn. 20(3):273–297. doi:10.1007/BF00994018.
  • Dahal RK, Hasegawa S. 2008. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology. 100(3–4):429–443. doi:10.1016/j.geomorph.2008.01.014.
  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P. 2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology. 102(3–4):496–510. doi:10.1016/j.geomorph.2008.05.041.
  • Das S,Sarkar S,Kanungo DP. 2023. A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Nat Hazards. 115(1):23–72. doi:10.1007/s11069-022-05554-x.
  • Dunning SA, Massey CI, Rosser NJ. 2009. Structural and geomorphological features of landslides in the Bhutan Himalaya derived from terrestrial laser scanning. Geomorphology. 103(1):17–29. doi:10.1016/j.geomorph.2008.04.013.
  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 17(1):43–57. doi:10.1111/j.1472-4642.2010.00725.x.
  • ERDAS Inc. 1999. Erdas field guide. Atlanta, GA: Erdas Inc.
  • ESRI. 2008. ArcGIS 9.3. Redlands: Environmental Systems Research Institute.
  • Farber O,Kadmon R. 2003. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Modell. 160(1-2):115–130. doi:10.1016/S0304-3800(02)00327-7. (Farber and Kadmon, 2003)
  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E. 2013. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides. 10(2):175–189. doi:10.1007/s10346-012-0320-1.
  • Ghorbanzadeh O, Blaschke T, Aryal J, Gholaminia K. 2020. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. J Spat Sci. 65(3):401–418. doi:10.1080/14498596.2018.1505564.
  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL. 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science. 310(5750):987–991. doi:10.1126/science.1116681.
  • Guo W, Ni X, Jing D, Li S. 2014. Spatial-temporal patterns of vegetation dynamics and their relationships to climate variations in Qinghai Lake Basin using MODIS time-series data. J Geogr Sci. 24(6):1009–1021. doi:10.1007/s11442-014-1134-y.
  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology. 72(1–4):272–299. doi:10.1016/j.geomorph.2005.06.002.
  • Haigh MJ, Rawat JS, Rawat MS, Bartarya SK, Rai SP. 1995. Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. Forest Ecol Manag. 78(1–3):173–189. doi:10.1016/0378-1127(95)03584-5.
  • Hasegawa S, Dahal RK, Yamanaka M, Bhandary NP, Yatabe R, Inagaki H. 2009. Causes of large-scale landslides in the Lesser Himalaya of central Nepal. Environ Geol. 57(6):1423–1434. doi:10.1007/s00254-008-1420-z.
  • Hearn GJ, Hart AB. 2019. Landslide susceptibility mapping: a practitioner’s view. Bull Eng Geol Environ. 78:5811–5826.
  • Hejazi A, Javadi M, Musavi Kojabad N. 2022. Landslide Hazard Evaluation and Zoning with Fuzzy Logic (Case Study: Saraju River Basin).Geography (Regional Planning). (Hejazi, 2022)
  • Hewitt K. 1998. Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology. 26(1–3):47–80. doi:10.1016/S0169-555X(98)00051-8.
  • HijmansRJPhillips S, Leathwick J, Elith J, Hijmans MRJ.2017.Package ‘dismo’. Circles, 9(1):1–68. (Hijmans, 2017)
  • Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecol Model. 199(2):142–152. doi:10.1016/j.ecolmodel.2006.05.017.
  • Hong H,Liu J,Bui DT,Pradhan B,Acharya TD,Pham BT,Zhu A-X,Chen W,Ahmad BB. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). CATENA. 163:399–413. doi:10.1016/j.catena.2018.01.005.
  • Huang Y,Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. CATENA. 165:520–529. doi:10.1016/j.catena.2018.03.003.
  • Javidan N,Kavian A,Pourghasemi HR,Conoscenti C,Jafarian Z,Rodrigo-Comino J. 2021. Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Sci Rep. 11(1). doi: 10.1038/s41598-021-85862-7.
  • Kadavi P,Lee C-W,Lee S. 2018. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sensing. 10(8):1252.doi:10.3390/rs10081252.
  • Karatzoglou A, Meyer D, Hornik K. 2006. Support vector machines in R. J Stat Soft. 15(9):1–28. doi:10.18637/jss.v015.i09.
  • Kaushik S, Rafiq M, Joshi PK, Singh T. 2020. Examining the glacial lake dynamics in a warming climate and GLOF modelling in parts of Chandra basin, Himachal Pradesh, India. Sci Total Environ. 714:136455. doi:10.1016/j.scitotenv.2019.136455.
  • Khattak GA, Owen LA, Kamp U, Harp EL. 2010. Evolution of earthquake-triggered landslides in the Kashmir Himalaya, northern Pakistan. Geomorphology. 115(1–2):102–108. doi:10.1016/j.geomorph.2009.09.035.
  • Kuncheva LI. 2004. Combining pattern classifiers: methods and algorithms, Hoboken, NJ: John Wiley & Sons, Inc.
  • Kundu V, Patel RC. 2019. Susceptibility status of landslides in Yamuna valley, Uttarakhand, NW-Himalaya, India. Him Geol. 40(1):30–49.
  • Lee S. 2019. Current and future status of GIS-based landslide susceptibility mapping: a literature review. Korean J Remote Sens. 35(1):179–193.
  • Mehrotra GS, Sarkar S, Kanungo DP, Mahadevaiah K. 1996. Terrain analysis and spatial assessment of landslide hazards in parts of Sikkim Himalaya. J Geol Soc India. 47:491–498.
  • Naceur HA, Abdo HG, Igmoullan B, Namous M, Almohamad H, Al Dughairi AA, Al-Mutiry M. 2022. Performance assessment of the landslide susceptibility modelling using the support vector machine, radial basis function network, and weight of evidence models in the N’fis river basin, Morocco. Geosci Lett. 9(1):39. doi:10.1186/s40562-022-00249-4.
  • Naimi B,Araújo MB. 2016. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography. 39(4):368–375. doi:10.1111/ecog.01881.
  • Owen LA, Kamp U, Khattak GA, Harp EL, Keefer DK, Bauer MA. 2008. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology. 94(1–2):1–9. doi:10.1016/j.geomorph.2007.04.007.
  • Ozdemir A,Altural T. 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J. Asian Earth Sci. 64:180–197. doi:10.1016/j.jseaes.2012.12.014.
  • Park NW. 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ Earth Sci. 73(3):937–949. doi:10.1007/s12665-014-3442-z.
  • Pham BT, Bui DT, Pourghasemi HR, Indra P, Dholakia MB. 2017. Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol. 128(1–2):255–273. doi:10.1007/s00704-015-1702-9.
  • Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 31(2):161–175. doi:10.1111/j.0906-7590.2008.5203.x.
  • Pourghasemi HR,Kornejady A,Kerle N,Shabani F. 2020. Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. CATENA. 187:104364.doi:10.1016/j.catena.2019.104364.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. 51:350–365. doi:10.1016/j.cageo.2012.08.023.
  • Rabby YW,Li Y,Hilafu H. 2023. An objective absence data sampling method for landslide susceptibility mapping. Sci Rep. 13(1). doi:10.1038/s41598-023-28991-5.
  • Rahman G, Bacha AS, Ul Moazzam MF, Rahman AU, Mahmood S, Almohamad H, Al Dughairi AA, Al-Mutiry M, Alrasheedi M, Abdo HG. 2022. Assessment of landslide susceptibility, exposure, vulnerability, and risk in Shahpur Valley, eastern Hindu Kush. Front Earth Sci. 10:1348. doi:10.3389/feart.2022.953627.
  • Rokach L. 2010. Ensemble-based classifiers. Artif Intell Rev. 33:1–39. doi:10.1007/s10462-009-9124-7.
  • Roy J,Saha S,Arabameri A,Blaschke T,Bui DT. 2019. A Novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong Districts, West Bengal, India. Remote Sensing. 11(23):2866.doi:10.3390/rs11232866.
  • Ruddell BL, Brunsell NA, Stoy P. 2013. Applying information theory in the geosciences to quantify process uncertainty, feedback, scale. Eos Trans AGU. 94(5):56–56. doi:10.1002/2013EO050007.
  • Saha S,Saha A,Hembram TK,Mandal K,Sarkar R,Bhardwaj D. 2022. Prediction of spatial landslide susceptibility applying the novel ensembles of CNN, GLM and random forest in the Indian Himalayan region. Stoch Environ Res Risk Assess. 36(10):3597–3616. doi:10.1007/s00477-022-02212-3.
  • Sangeeta, Singh SK. 2023. Influence of anthropogenic activities on landslide susceptibility: a case study in Solan district, Himachal Pradesh, India. J Mt Sci. 20(2):429–447. doi:10.1007/s11629-022-7593-1.
  • Sarkar S, Kanungo DP, Chauhan PKS. 2011. Varunavat landslide disaster in Uttarkashi, Garhwal Himalaya, India. QJEGH. 44(1):17–22. doi:10.1144/1470-9236/09-029.
  • Sarkar S, Kanungo DP, Mehrotra GS. 1995. Landslide hazard zonation: a case study in Garhwal Himalaya, India. Mt Res Dev. 15(4):301–309. doi:10.2307/3673806.
  • Shano L,Raghuvanshi TK,Meten M. 2020. Landslide susceptibility evaluation and hazard zonation techniques – a review. Geoenviron Disasters. 7(1). doi:10.1186/s40677-020-00152-0.
  • Shu H,Guo Z,Qi S,Song D,Pourghasemi H,Ma J. 2021. Integrating landslide typology with weighted frequency ratio model for landslide susceptibility mapping: a case study from Lanzhou city of Northwestern China. Remote Sensing. 13(18):3623.doi:10.3390/rs13183623.
  • Singh AP, Dhadse K, Ahalawat J. 2019. Managing water quality of a river using an integrated geographically weighted regression technique with fuzzy decision making model. Environ Monit Assess. 191(6):378. doi:10.1007/s10661-019-7487-z.
  • Slingsby JA, Slingsby PW. 2019. Monitoring the critically endangered Clanwilliam cedar with freely available Google Earth imagery. PeerJ. 7:e7005. doi:10.7717/peerj.7005.
  • Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science. 240(4857):1285–1293. doi:10.1126/science.3287615.
  • Thuiller W,Lafourcade B,Engler R,Araújo MB. 2009. BIOMOD- a platform for ensemble forecasting of species distributions. Ecography. 32(3):369–373. doi:10.1111/j.1600-0587.2008.05742.x.
  • Thuillier G, Hersé M, Foujols T, Peetermans W, Gillotay D, Simon PC, Mandel H. 2003. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Sol Phys. 214(1):1–22. doi:10.1023/A:1024048429145.
  • Tsangaratos P,Benardos A. 2014. Estimating landslide susceptibility through a artificial neural network classifier. Nat Hazards. 74(3):1489–1516. doi:10.1007/s11069-014-1245-x.
  • Wang Y,Sun D,Wen H,Zhang H,Zhang F. 2020. Comparison of random forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang County (Chongqing, China). IJERPH. 17(12):4206. doi:10.3390/ijerph17124206.
  • Weigel AP,Liniger MA,Appenzeller C. 2008. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts?. QJR Meteorol Soc. 134(630):241–260. doi:10.1002/qj.210.
  • Williams CJ, Lee SS, Fisher RA, Dickerman LH. 1999. A comparison of statistical methods for prenatal screening for Down syndrome. Appl Stochastic Models Bus Ind. 15(2):89–101. doi:10.1002/(SICI)1526-4025(199904/06)15:2<89::AID-ASMB366>3.0.CO;2-K.
  • Yao X, Dai FC. 2006. Support vector machine modeling of landslide susceptibility using a GIS: a case study. IAEG2006, 793.
  • Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci. 61(4):821–836. doi:10.1007/s12665-009-0394-9.
  • Zhao Q,Chen W,Peng C,Wang D,Xue W,Bian H. 2022. Modeling landslide susceptibility using an evidential belief function-based multiclass alternating decision tree and logistic model tree. Environ Earth Sci. 81(15). doi:10.1007/s12665-022-10525-3.
  • Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning JC. 2010. New trends in species distribution modelling. Ecography. 33(6):985–989. doi:10.1111/j.1600-0587.2010.06953.x.