782
Views
1
CrossRef citations to date
0
Altmetric
Research Article

High-rate GNSS data in seismic moment tensor inversion: application to anthropogenic earthquakes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2232084 | Received 14 Nov 2022, Accepted 27 Jun 2023, Published online: 10 Jul 2023

References

  • Antonielli B, Sciortino A, Scancella S, Bozzano F, Mazzanti P. 2021. Tracking deformation processes at the Legnica Glogow Copper District (Poland) by satellite InSAR—I: room and pillar mine district. Land. 10(6):653. doi:10.3390/land10060653.
  • Bartlett S, Burgess H, Damjanović B, Gowans R, Lattanzi C. 2013. Technical report on the production of copper and silver by KGHM Polish Copper JSC in the Legnica-Głogów. Lubin: KGHM Polska Miedź SA.
  • Benedetti E, Branzanti M, Biagi L, Colosimo G, Mazzoni A, Crespi M. 2014. Global navigation satellite systems seismology for the 2012 Mw 6.1 Emilia earthquake: exploiting the VADASE algorithm. Seismol Res Lett. 85(3):649–656. doi:10.1785/0220130094.
  • Bischoff M, Cete A, Fritschen R, Meier T. 2010. Coal mining induced seismicity in the Ruhr area, Germany. Pure Appl Geophys. 167(1–2):63–75. doi:10.1007/s00024-009-0001-8.
  • Blachowski J, Cacoń S, Milczarek W. 2009. Analysis of post-mining ground deformations caused by underground coal extraction in complicated geological conditions. Acta Geodyn Geomater. 6(3):351–357.
  • Bock Y, Melgar D, Crowell BW. 2011. Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bull Seismol Soc Am. 101(6):2904–2925. doi:10.1785/0120110007.
  • Cesca S, Rohr A, Dahm T. 2013. Discrimination of induced seismicity by full moment tensor inversion and decomposition. J Seismol. 17(1):147–163. doi:10.1007/s10950-012-9305-8.
  • Dach R, Schaer S, Arnold D, Orliac E, Prange L, Susnik A, Villiger A, Jäggi A. 2020. CODE final product series for the IGS; [accessed 2022 Mar 10]. http://www.aiub.unibe.ch/download/CODE. doi:10.7892/boris.75876.4.
  • EPISODES Platform. 2017. Episode: LGCD; [accessed 2022 Nov 8]. https://episodesplatform.eu/?lang=en#episode:LGCD. doi:10.25171/InstGeoph_PAS_ISEPOS-2017-006.
  • Furst SL, Doucet S, Vernant P, Champollion C, Carme JL. 2021. Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion. Solid Earth. 12(1):15–34. doi:10.5194/se-12-15-2021.
  • Genrich JF, Bock Y. 2006. Instantaneous geodetic positioning with 10–50 Hz GPS measurement: noise characteristics and implications for monitoring networks. J Geophys Res. 111(B03403). doi:10.1029/2005JB003617.
  • Gibowicz SJ. 1990. Seismicity induced by mining. In: Dmowska R, Saltzman B, editors. Advances in geophysics. Vol. 32. Elsevier; p. 1–74. doi:10.1016/S0065-2687(08)60426-4.
  • Hussain A, Ahmed A, Magsi H, Soomro JB, Bukhari SSH, Ro JS. 2021. Adaptive data length method for GPS signal acquisition in weak to strong fading conditions. Electronics. 10(14):1735. doi:10.3390/electronics10141735.
  • Hohensinn R, Geiger A. 2018. Stand-alone GNSS sensors as velocity seismometers: real-time monitoring and earthquake detection. Sensors. 18(11):3712. doi:10.3390/s18113712.
  • Iakovidis DK, Ooi M, Kuang YC, Demidenko S, Shestakov A, Sinitsin V, Henry M, Sciacchitano A, Discetti S, Donati S, et al. 2022. Roadmap on signal processing for next generation measurement systems. Meas Sci Technol. 33(1):012002. doi:10.1088/1361-6501/ac2dbd.
  • Ilieva M, Polanin P, Borkowski A, Gruchlik P, Smolak K, Kowalski A, Rohm W. 2019. Mining deformation life cycle in the light of InSAR and deformation models. Rem Sens. 11(7):745. doi:10.3390/rs11070745.
  • Ilieva M, Rudziński Ł, Pawłuszek-Filipiak K, Lizurek G, Kudłacik I, Tondaś D, Olszewska D. 2020. Combined study of a significant mine collapse based on seismological and geodetic data-29 January 2019, Rudna Mine, Poland. Rem Sens. 12(10):1570. doi:10.3390/rs12101570.
  • Johnson SW, Chambers DJA, Boltz MS, Koper KD. 2021. Application of a convolutional neural network for seismic phase picking of mining-induced seismicity. Geophys J Int. 224(1):230–240. doi:10.1093/gji/ggaa449.
  • Jost ML, Herrmann RB. 1989. A student’s guide to and review of moment tensors. Seismol Res Lett. 60(2):37–57. doi:10.1785/gssrl.60.2.37.
  • Käufl P, Valentine AP, O’Toole TB, Trampert J. 2014. A framework for fast probabilistic centroid-moment-tensor determination-inversion of regional static displacement measurements. Geophys J Int. 196(3):1676–1693. doi:10.1093/gji/ggt473.
  • Kijko A. 1977. An algorithm for the optimum distribution of a regional seismic network-I. PAGEOPH. 115(4):999–1009. doi:10.1007/BF00881222.
  • Kudłacik I, Kapłon J, Lizurek G, Crespi M, Kurpiński G. 2021. High-rate GPS positioning for tracing anthropogenic seismic activity: the 29 January 2019 mining tremor in Legnica-Głogów Copper District, Poland. Measurement. 168(September 2020):1–9. doi:10.1016/j.measurement.2020.108396.
  • Kwiatek G, Martínez-Garzón P, Bohnhoff M. 2016. HybridMT: a MATLAB/shell environment package for seismic moment tensor inversion and refinement. Seismol Res Lett. 87(4):964–976. doi:10.1785/0220150251.
  • Li X, Guo B, Lu C, Ge M, Wickert J, Schuh H. 2014. Real-time GNSS seismology using a single receiver. Geophys J Int. 198(1):72–89. doi:10.1093/gji/ggu113.
  • Li X, Zheng K, Li X, Liu G, Ge M, Wickert J, Schuh H. 2019. Real-time capturing of seismic waveforms using high-rate BDS, GPS and GLONASS observations: the 2017 Mw 6.5 Jiuzhaigou earthquake in China. GPS Solut. 23(1):1–12. doi:10.1007/s10291-018-0808-9.
  • Lizurek G. 2017. Full moment tensor inversion as a practical tool in case of discrimination of tectonic and anthropogenic seismicity in Poland. Pure Appl Geophys. 174(1):197–212. doi:10.1007/s00024-016-1378-9.
  • Lizurek G, Rudziński Ł, Plesiewicz B. 2015. Mining induced seismic event on an inactive fault. Acta Geophys. 63(1):176–200. doi:10.2478/s11600-014-0249-y.
  • Melgar D, Bock Y, Crowell BW. 2012. Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records. Geophys J Int. 188(2):703–718. doi:10.1111/j.1365-246X.2011.05297.x.
  • Michel C, Kelevitz K, Houlié N, Edwards B, Psimoulis P, Su Z, Clinton J, Giardini D. 2017. The potential of high-rate GPS for strong ground motion assessment. Bull Seismol Soc Am. 107(4):1849–1859. doi:10.1785/0120160296.
  • Orlecka-Sikora B, Cesca S, Lasocki S, Lizurek G, Wiejacz P, Rudziński Ł. 2014. Seismogenesis of exceptional ground motion due to a sequence of mining induced tremors from Legnica-Głogów Copper District in Poland. Geophys J Int. 198(1):40–54. doi:10.1093/gji/ggu109.
  • O’Toole TB, Valentine AP, Woodhouse JH. 2013. Earthquake source parameters from GPS-measured static displacements with potential for real-time application. Geophys Res Lett. 40(1):60–65. doi:10.1029/2012GL054209.
  • Pawluszek-Filipiak K, Borkowski A. 2021. Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. Eur J Rem Sens. 54(sup1):18–30. doi:10.1080/22797254.2020.1759455.
  • Paziewski J, Kurpinski G, Wielgosz P, Stolecki L, Sieradzki R, Seta M, Oszczak S, Castillo M, Martin-Porqueras F. 2020. Towards Galileo + GPS seismology: validation of high-rate GNSS-based system for seismic events characterisation. Measurement. 166:108236. doi:10.1016/j.measurement.2020.108236.
  • Paziewski J, Sieradzki R, Baryla R. 2018. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacement detection. Meas Sci Technol. 29(3):035002. doi:10.1088/1361-6501/aa9ec2.
  • Paziewski J, Sieradzki R, Baryla R. 2019. Detection of structural vibration with high-rate precise point positioning: case study results based on 100 Hz multi-GNSS observables shake-table simulation. Sensors. 19(22):4832. doi:10.3390/s19224832.
  • Psimoulis PA, Houlié N, Habboub M, Michel C, Rothacher M. 2018. Detection of ground motions using high-rate GPS time-series. Geophys J Int. 214(2):1237–1251. doi:10.1093/gji/ggy198.
  • Rudziński Ł, Cesca S, Lizurek G. 2016. Complex rupture process of the 19 March 2013, Rudna mine (Poland) induced seismic event and collapse in the light of local and regional moment tensor inversion. Seismol Res Lett. 87(2A):274–284. doi:10.1785/0220150150.
  • Ruhl CJ, Melgar D, Geng J, Goldberg DE, Crowell BW, Allen RM, Bock Y, Barrientos S, Riquelme S, Baez JC, et al. 2019. A global database of strong-motion displacement GNSS recordings and an example application to PGD scaling. Seismol Res Lett. 90(1):271–279. doi:10.1785/0220180177.
  • Saunders JK, Goldberg DE, Haase JS, Bock Y, Offield DG, Melgar D, Restrepo J, Fleischman RB, Nema A, Geng J, et al. 2016. Seismogeodesy using GPS and low-cost MEMS accelerometers: perspectives for earthquake early warning and rapid response. Bull Seismol Soc Am. 106(6):2469–2489. doi:10.1785/0120160062.
  • Sen AT, Cesca S, Bischoff M, Meier T, Dahm T. 2013. Automated full moment tensor inversion of coal mining-induced seismicity. Geophys J Int. 195(2):1267–1281. doi:10.1093/gji/ggt300.
  • Shearer PM. 2009. Introduction to seismology. Cambridge: Cambridge University Press.
  • Shu Y, Fang R, Geng J, Zhao Q, Liu J. 2018. Broadband velocities and displacements from integrated GPS and accelerometer data for high-rate seismogeodesy. Geophys Res Lett. 45(17):8939–8948. doi:10.1029/2018GL079425.
  • Šílenỳ J, Milev A. 2017. Mechanism of mining-associated seismic events recorded at Driefontein – Sibanye gold mine in South Africa. In: Rock mechanics and engineering. Vol. 5. London: CRC Press; p. 353–378. doi:10.4324/9781315708119.
  • Smalley R. 2009. High-rate GPS: how high do we need to go? Seismol Res Lett. 80(6):1054–1061. doi:10.1785/gssrl.80.6.1054.
  • Swanson P, Koontz W, Abshire J. 2009. Seismic network operations at a deep underground coal mining district in Western Colorado (USA). Controlling Seismic Hazard and Sustainable Development of Deep Mines: 7th International Symposium on Rockburst and Seismicity in Mines (Rasim7); Vol. 1 and 2; p. 1407–1412. https://www.cdc.gov/niosh/mining/works/coversheet1017.html.
  • Takasu T. 2009. RTKLIB: open source program package for RTK-GPS. Free and Open Source Software for Geospatial (FOSS4G) Conference 2009; Tokyo, Japan.
  • The Canadian Geodetic Survey of Natural Resources Canada. 2021. The Canadian spatial reference system precise point positioning (CSRS-PPP); [accessed 2022 Mar 10]. https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php.
  • Tymińska A, Lizurek G. 2022. Noise influence on moment tensor inversion with the use of first P-wave amplitude based on VERIS and LUMINEOS networks. Proceedings of the Third European Conference on Earthquake Engineering and Seismology; Bucureşt, Romania. Conspress. ISBN 978-973-100-533-1. https://3ecees.ro/wp-content/uploads/2022/08/Proceedings_3ECEES_2022.pdf.
  • Whidden KM, Pankow KL. 2012. A catalog of regional moment tensors in Utah from 1998 to 2011. Seismol Res Lett. 83(5):775–783. doi:10.1785/0220120046.
  • Wilson MP, Davies RJ, Foulger GR, Julian BR, Styles P, Gluyas JG, Almond S. 2015. Anthropogenic earthquakes in the UK: a national baseline prior to shale exploitation. Mar Pet Geol. 68:1–17. doi:10.1016/j.marpetgeo.2015.08.023.
  • Yang H, Chu R, Sheng M. 2018. Source characterization of the 2015 gypsum mining earthquake in Pingyi, Shandong. Prog Geophys. 33(1):125–132.
  • Yang Z, Li Z, Zhu J, Wang Y, Wu L. 2020. Use of SAR/InSAR in mining deformation monitoring, parameter inversion, and forward predictions: a review. IEEE Geosci Remote Sens Mag. 8(1):71–90. doi:10.1109/MGRS.2019.2954824.