625
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characteristics, numerical analysis and countermeasures of mud inrush geohazards of Mountain tunnel in karst region

, , &
Article: 2242691 | Received 20 Mar 2023, Accepted 09 Jun 2023, Published online: 07 Aug 2023

References

  • Alemdag S, Zeybek HI, Kulekci G. 2019. Stability evaluation of the Gumushane-Akcakale cave by numerical analysis method. J Mt Sci. 16(9):2150–2158. doi: 10.1007/s11629-019-5529-1.
  • Bym T, Marketos G, Burland JB, O'sullivan C. 2013. Use of a two-dimensional discrete-element line-sink model to gain insight into tunnelling-induced deformations. Geotechnique. 63(9):791–795. doi: 10.1680/geot.12.T.003.
  • Cai GQ, Li J, Liu SP, Li JG, Zhao CG. 2021. Liquid-bridge contact model of unsaturated granular materials and its application in discrete-element method. Int J Geomech. 21(9):04021176. doi: 10.1061/(ASCE)GM.1943-5622.0002122.
  • Chen YF, Liao Z, Zhou JQ, Hu R, Yang Z, Zhao XJ, Wu XL, Yang XL. 2020. Non-Darcian flow effect on discharge into a tunnel in karst aquifers. Int. J. Rock Mech. Min. Sci. 130:104319. doi: 10.1016/j.ijrmms.2020.104319.
  • Cui YF, Chan D, Nouri A. 2017. Coupling of solid deformation and pore pressure for undrained deformation-a discrete element method approach. Int J Numer Anal Methods Geomech. 41(18):1943–1961. doi: 10.1002/nag.2708.
  • Elbaz K, Shen SL, Zhou AN, Yin ZY, Lyu HM. 2021. Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering. 7(2):238–251. doi: 10.1016/j.eng.2020.02.016.
  • Frough O, Khetwal A, Rostami J. 2019. Predicting TBM utilization factor using discrete event simulation models. Tunn. Undergr. Space Technol. 87:91–99. doi: 10.1016/j.tust.2019.01.017.
  • Guo X, Chai JR, Qin Y, Xu ZG, Fan YN, Zhang XW. 2019. Mechanism and treatment technology of three water inrush events in the Jiaoxi River Tunnel in Shaanxi, China. J Perform Constr Facil. 33(1):04018098. doi: 10.1061/(ASCE)CF.1943-5509.0001251.
  • Gutierrez F, Parise M, De Waele J, Jourde H. 2014. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci Rev. 138:61–88. doi: 10.1016/j.earscirev.2014.08.002.
  • Hatzor YH, Wainshtein I, Bakun Mazor D. 2010. Stability of shallow karstic caverns in blocky rock masses. Int. J. Rock Mech. Min. Sci. 47(8):1289–1303. doi: 10.1016/j.ijrmms.2010.09.014.
  • Huang X, Liang Q, Zhu ZG, Guo JQ, Tian YC. 2023. Identification and Treatment of Collapse and Mud Inrush Caused by Deep Karst Trough in Tunnels. Geofluids. 2023:1–14. doi: 10.1155/2023/3007313.
  • Jorda-Bordehore L, Martin-Garcia R, Alonso-Zarza AM, Jorda-Bordehore R, Romero-Crespo PL. 2016. Stability assessment of shallow limestone caves through an empirical approach: application of the stability graph method to the Castaar Cave study site (Spain). Bull Eng Geol Environ. 75(4):1469–1483. doi: 10.1007/s10064-015-0836-4.
  • Kaufmann G, Romanov D. 2020. Modelling long-term and short-term evolution of karst in vicinity of tunnels. J. Hydrol. 581:124282. doi: 10.1016/j.jhydrol.2019.124282.
  • Li LP, Chen DY, Li SC, Shi SS, Zhang MG, Liu HL. 2018a. Numerical analysis and fluid-solid coupling model test of filling-type fracture water inrush and mud gush. Geomech. Eng. 13(6):1011–1025.
  • Li J, Hong AH, Yuan DX, Jiang YJ, Deng SJ, Cao C, Liu J. 2021a. A new distributed karst-tunnel hydrological model and tunnel hydrological effect simulations. J. Hydrol. 593:125639. doi: 10.1016/j.jhydrol.2020.125639.
  • Li SC, Liu C, Zhou ZQ, Li LP, Shi SS, Yuan YC. 2021b. Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence. Tunn Undergr Space Technol. 113:103948. doi: 10.1016/j.tust.2021.103948.
  • Lin SS, Shen SL, Zhang N, Zhou AN. 2021. Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms. Geosci Front. 12(5):101177. doi: 10.1016/j.gsf.2021.101177.
  • Li SC, Sun HF, Lu XS, Li X. 2014a. Three-dimensional Modeling of Transient Electromagnetic Responses of Water-bearing Structures in Front of a Tunnel Face. JEEG. 19(1):13–32. doi: 10.2113/JEEG19.1.13.
  • Li LP, Sun SQ, Wang J, Song SG, Fang ZD, Zhang MG. 2020. Development of compound EPB shield model test system for studying the water inrushes in karst regions. Tunn Undergr Space Technol. 101:103404. doi: 10.1016/j.tust.2020.103404.
  • Liu J, Li ZP, Zhang X, Weng XJ. 2021. Analysis of water and mud inrush in tunnel fault fracture zone-A case study of yonglian tunnel. Sustainability. 13(17):9585. doi: 10.3390/su13179585.
  • Liu N, Pei JH, Cao CY, Liu XY, Huang YX, Mei GX. 2022a. Geological investigation and treatment measures against water inrush hazard in karst tunnels: a case study in Guiyang, southwest China. Tunn Undergr Space Technol. 124:104491. doi: 10.1016/j.tust.2022.104491.
  • Liu T, Xie Y, Feng ZH, Luo YB, Wang K, Xu W. 2020. Better understanding the failure modes of tunnels excavated in the boulder-cobble mixed strata by distinct element method. Eng Fail Anal. 116:104712. doi: 10.1016/j.engfailanal.2020.104712.
  • Liu JH, Zhao YL, Tan T, Zhang LY, Zhu ST, Xu FY. 2022b. Evolution and modeling of mine water inflow and hazard characteristics in southern coalfields of China: a case of Meitanba mine. Int J Min Sci Technol. 32(3):513–524. doi: 10.1016/j.ijmst.2022.04.001.
  • Li B, Wang XQ, Liu ZJ, Li T. 2014b. Study on multi-field catastrophe evolution laws of water inrush from concealed karst cave in roadway excavation: a case of Jiyuan coal mine. Geomat Nat Hazards Risk. 12(1):222–243. doi: 10.1080/19475705.2020.1870170.
  • Li SC, Wu J, Xu ZH, Li LP. 2017a. Unascertained Measure Model of Water and Mud Inrush Risk Evaluation in Karst Tunnels and Its Engineering Application. KSCE J Civ Eng. 21(4):1170–1182. doi: 10.1007/s12205-016-1569-z.
  • Li SC, Wu J, Xu ZH, Zhou L, Zhang B. 2019. A possible prediction method to determine the top concealed karst cave based on displacement monitoring during tunnel construction. Bull Eng Geol Environ. 78(1):341–355. doi: 10.1007/s10064-017-1060-1.
  • Li SC, Xu ZH, Huang X, Lin P, Zhao ZC, Zhang QS, Yang L, Zhang X, Sun HF, Pan DD. 2018b. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels. Chin. J. Rock Mech. Eng. 37(5):1041–1069. (In Chinese)
  • Li DQ, Yang ZB, Zhang RJ, Hu R, Chen YF. 2022. Morphological patterns and interface instability during withdrawal of liquid-particle mixtures. J Colloid Interface Sci. 608(Pt 2):1598–1607. doi: 10.1016/j.jcis.2021.10.115.
  • Li XZ, Zhang PX, He ZC, Huang Z, Cheng ML, Guo L. 2017b. Identification of geological structure which induced heavy water and mud inrush in tunnel excavation: a case study on Lingjiao tunnel. Tunn Undergr Space Technol. 69:203–208. doi: 10.1016/j.tust.2017.06.014.
  • Luo YB, Chen JX, Shi Z, Li JZ, Liu WW. 2020. Mechanical characteristics of primary support of large span loess highway tunnel: a case study in Shaanxi Province, Loess Plateau, NW China primary. Tunn Undergr Space Technol. 104:103532. doi: 10.1016/j.tust.2020.103532.
  • Ma D, Duan HY, Zhang JX. 2022a. Solid grain migration on hydraulic properties of fault rocks in underground mining tunnel: radial seepage experiments and verification of permeability prediction. Tunn Undergr Space Technol. 126:104525. doi: 10.1016/j.tust.2022.104525.
  • Ma D, Duan HY, Zhang JX, Bai HB. 2022b. A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines. Int J Coal Sci Technol. 9(1):50. doi: 10.1007/s40789-022-00525-w.
  • Ma D, Duan HY, Zhang JX, Liu XW, Li ZH. 2022c. Numerical simulation of water-silt inrush hazard of fault rock: a three-phase flow model. Rock Mech Rock Eng. 55(8):5163–5182. doi: 10.1007/s00603-022-02878-9.
  • Ma EL, Lai JX, Xu SS, Shi XH, Zhang J, Zhong YJ. 2022d. Failure analysis and treatments of a loess tunnel being constructed in ground fissure area. Eng Fail Anal. 134:106034. doi: 10.1016/j.engfailanal.2022.106034.
  • Ma K, Wang LJ, Long LJ, Peng YL, He GC. 2020. Discrete element analysis of structural characteristics of stepped reinforced soil retaining wall. Geomat Nat Hazards Risk. 11(1):1447–1465. doi: 10.1080/19475705.2020.1797907.
  • Mádl-Szőnyi J, Tóth Á. 2015. Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol J. 23(7):1359–1380. doi: 10.1007/s10040-015-1274-x.
  • Mohyla M, Vojtasik K, Hrubesova E, Stolarik M, Nedoma J, Pinka M. 2020. Approach for optimisation of tunnel lining design. Appl Sci Basel. 10(19):6705. doi: 10.3390/app10196705.
  • Parise M, Lollino P. 2011. A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy. Geomorphology. 134(1–2):132–143. doi: 10.1016/j.geomorph.2011.06.008.
  • Peng YX, Wu L, Zuo QJ, Chen CH, Hao Y. 2020. Risk assessment of water inrush in tunnel through water-rich fault based on AHP-Cloud model. Geomat Nat Hazards Risk. 11(1):301–317. doi: 10.1080/19475705.2020.1722760.
  • She W, Zheng ZH, Zhang QC, Zuo WQ, Yang JX, Zhang YS, Zheng L, Hong JX, Miao CW. 2020. Predesigning matrix-directed super-hydrophobization and hierarchical strengthening of cement foam. Cem Concr Res. 131:106029. doi: 10.1016/j.cemconres.2020.106029.
  • Su HZ, Li H, Zhang LH, Wen ZP. 2020. Particle flow code method-based seepage behavior analysis and control effect evaluation for soil levee. Eng Comput. 36(1):97–114. doi: 10.1007/s00366-018-0687-2.
  • Tran VDH, Meguid MA, Chouinard LE. 2015. Three-dimensional analysis of geogrid-reinforced soil using a finite-discrete element framework. Int J Geomech. 15(4):04014066. doi: 10.1061/(ASCE)GM.1943-5622.0000410.
  • Wang ZF, Cheng WC. 2021. Predicting jet-grout column diameter to mitigate the environmental impact using an artificial intelligence algorithm. Undergr Space. 6(3):267–280. doi: 10.1016/j.undsp.2020.02.004.
  • Wang XL, Lai JX, Qiu JL, Xu W, Wang LX, Luo YB. 2020a. Geohazards, reflection and challenges in Mountain tunnel construction of China: a data collection from 2002 to 2018. Geomat Nat Hazards Risk. 11(1):766–785. doi: 10.1080/19475705.2020.1747554.
  • Wang ZF, Shen SL, Cheng WC, Xu YS. 2016. Ground fissures in Xi’an and measures to prevent damage to the Metro tunnel system due to geohazards. Environ Earth Sci. 75(6):511.
  • Wang ZF, Shen SL, Modoni G. 2019. Enhancing discharge of spoil to mitigate disturbance induced by horizontal jet grouting in clayey soil: theoretical model and application. Comput Geotech. 111:222–228. doi: 10.1016/j.compgeo.2019.03.012.
  • Wang ZF, Shen SL, Modoni G, Zhou A. 2020b. Excess pore water pressure caused by the installation of jet grouting columns in clay. Comput Geotech. 125:103667. doi: 10.1016/j.compgeo.2020.103667.
  • Wang YC, Zheng SH, Li YL, Wang YM, Huang YH. 2021. The failure characteristics around shallow buried tunnels under rainfall conditions. Geomat Nat Hazards Risk. 12(1):363–380. doi: 10.1080/19475705.2021.1875058.
  • Wang JX, Zou BP, Liu Y, Tang YQ, Zhang XB, Yang P. 2014. Erosion-creep-collapse mechanism of underground soil loss for the karst rocky desertification in Chenqi village, Puding county, Guizhou, China. Environ Earth Sci. 72(8):2751–2764. doi: 10.1007/s12665-014-3182-0.
  • Wu GJ, Chen WZ, Yuan JQ, Yang DS, Bian HB. 2017. Formation mechanisms of water inrush and mud burst in a migmatite tunnel: a case study in China. J Mt Sci. 14(1):188–195. doi: 10.1007/s11629-016-4070-8.
  • Wu J, Li SC, Xu ZH, Zhao J. 2019. Determination of required rock thickness to resist water and mud inrush from karst caves under earthquake action. Tunn Undergr Space Technol. 85:43–55. doi: 10.1016/j.tust.2018.11.048.
  • Xue YG, Kong FM, Qiu DH, Su MX, Zhao Y, Zhang K. 2021. The classifications of water and mud/rock inrush hazard: a review and update. Bull Eng Geol Environ. 80(3):1907–1925. doi: 10.1007/s10064-020-02012-5.
  • Xue YG, Wang D, Li SC, Qiu DH, Li ZQ, Zhu JY. 2017. A risk prediction method for water or mud inrush from water-bearing faults in subsea tunnel based on cusp catastrophe model. KSCE J Civ Eng. 21(7):2607–2614. doi: 10.1007/s12205-017-0611-0.
  • Yang ZB, Juanes R. 2018. Two sides of a fault: grain-scale analysis of pore pressure control on fault slip. Phys Rev E. 97(2–1):022906. doi: 10.1103/PhysRevE.97.022906.
  • Yang ZB, Xue S, Zheng XK, Chen YF. 2019. Partitioning Dynamics of Gravity-Driven Unsaturated Flow Through Simple T-Shaped Fracture Intersections. Water Resour Res. 55(8):7130–7142. doi: 10.1029/2018WR024349.
  • Yu J, Zhong DH, Ren BY, Tong DW, Hong K. 2017. Probabilistic risk analysis of diversion tunnel construction simulation. Comput Aided Civil Infrastruct Eng. 32(9):748–771. doi: 10.1111/mice.12276.
  • Yuan JQ, Chen WZ, Tan XJ, Yang DS, Wang SY. 2019. Countermeasures of water and mud inrush disaster in completely weathered granite tunnels: a case study. Environ Earth Sci. 78(18):576.
  • Zhang JQ, Li SC, Zhang QS, Zhang X, Li P, Wang DM, Weng XJ. 2019. Mud inrush flow mechanisms: a case study in a water-rich fault tunnel. Bull Eng Geol Environ. 78(8):6267–6283. doi: 10.1007/s10064-019-01508-z.
  • Zhang S, Zhang L, He WC, Ling TH, Deng ZW, Fu GH. 2022a. Three-dimensional quantitative recognition of filler materials ahead of a tunnel face via time-energy density analysis of wavelet transforms. Minerals. 12(2):234. doi: 10.3390/min12020234.
  • Zhang WF, Zhou XM, Wei W, Cheng XY. 2022b. Risk assessment of water inrush in tunnels: a case study of a tunnel in Guangdong province, China. Sustainability. 14(18):11443. doi: 10.3390/su141811443.
  • Zheng YC, He SY, Yu Y, Zheng JY, Zhu Y, Liu T. 2021a. Characteristics, challenges and countermeasures of giant karst cave: A case study of Yujingshan tunnel in high-speed railway. Tunn Undergr Space Technol. 114:103988. doi: 10.1016/j.tust.2021.103988.
  • Zheng XK, Yang ZB, Wang S, Chen YF, Hu R, Zhao XJ, Wu XL, Yang XL. 2021b. Evaluation of hydrogeological impact of tunnel engineering in a karst aquifer by coupled discrete-continuum numerical simulations. J Hydrol. 597:125765. doi: 10.1016/j.jhydrol.2020.125765.
  • Zhou BQ, Yang ZB, Hu R, Zhao XJ, Chen YF. 2021. Assessing the impact of tunnelling on karst groundwater balance by using lumped parameter models. J Hydrol. 599:126375. doi: 10.1016/j.jhydrol.2021.126375.