349
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of saturation and loading angle on sandstone damage characteristics after freeze-thaw cycle

, , , &
Article: 2250526 | Received 24 Feb 2023, Accepted 25 May 2023, Published online: 14 Sep 2023

References

  • Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ. 2010. Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech. 77(11):2200–2212. doi: 10.1016/j.engfracmech.2010.03.009.
  • Al-Shayea N, A. 2001. The combined effect of clay and moisture content on the behavior of remolded unsaturated soils. Engineering geology. 62(4):319–342.
  • Asaad AO, Kevin B, Xavier B, Ákos T, Muzahim Al-M. 2015. Critical degree of saturation: a control factor of freeze–thaw damage of porous limestones at Castle of Chambord, France. Castle Chambord, France. Eng Geol. 185:71–80.
  • Chen L, Wu P, Chen Y, Zhang W. 2020. Experimental study on physical-mechanical properties and fracture behaviors of saturated yellow sandstone considering coupling effect of freeze-thaw and specimen inclination. Sustainability. 12(3):1029. doi: 10.3390/su12031029.
  • Chen TC, Yeung MR, Mori N. 2004. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action. Cold Reg Sci Technol. 38(2–3):127–136. doi: 10.1016/j.coldregions.2003.10.001.
  • Cheng H, Chen HQ, Cao GY, Rong CX, Yao ZS, Cai HB. 2020. Damage mechanism of porous rock caused by moisture migration during freeze-thaw process and experimental verification. Chin J Rock Mech Eng. 39(9):1739–1749.
  • Enayatollahi I, Aghajani Bazzazi A, Asadi A. 2014. Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines. Rock Mech Rock Eng. 47(2):799–807. doi: 10.1007/s00603-013-0415-6.
  • Geng J, Sun Q, Zhang Y, Cao L, Zhang W. 2017. Studying the dynamic damage failure of concrete based on acoustic emission. Constr Build Mater. 149:9–16. doi: 10.1016/j.conbuildmat.2017.05.054.
  • He Q, Li Y, Li D, Zhang C. 2020. Microcrack fracturing of coal specimens under quasi-static combined compression-shear loading. J Rock Mech Geotech Eng. 12(5):1014–1026. doi: 10.1016/j.jrmge.2020.01.009.
  • Huang S, Liu Q, Liu Y, Kang Y, Cheng A, Ye Z. 2018. Frost heaving and frost cracking of elliptical cavities (fractures) in low-permeability rock. Eng Geol. 234:1–10. doi: 10.1016/j.enggeo.2017.12.024.
  • Jin J, Yuan S, Lv Z, Sun Q. 2022. Development of backfill concrete including coal gangue and metakaolin and prediction of compressive strength by extreme learning machine. Minerals. 12(3):330. doi: 10.3390/min12030330.
  • Karakus M, Tutmez B. 2006. Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt Hammer and Sonic Velocity. Rock Mech Rock Eng. 39(1):45–57. doi: 10.1007/s00603-005-0050-y.
  • Li HQ, Wong LNY. 2012. Influence of flaw inclination angle and loading condition on crack initiation and propagation. Int J Solids Struct. 49(18):2482–2499. doi: 10.1016/j.ijsolstr.2012.05.012.
  • Li J-l, Zhou K-p, Liu W-j, Deng H-w. 2016. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze–thaw cycles. Trans Nonferrous Met Soc China. 26(11):2997–3003. doi: 10.1016/S1003-6326(16)64430-8.
  • Li YH. 2021. Study of freeze-thaw damage law and early warning model of sandstone with different saturation. Fuxin: Liaoning Technical University.
  • Liu Y, Cai Y, Huang S, Guo Y, Liu G. 2020. Effect of water saturation on uniaxial compressive strength and damage degree of clay-bearing sandstone under freeze-thaw. Bull Eng Geol Environ. 79(4):2021–2036. doi: 10.1007/s10064-019-01686-w.
  • Niu C, Zhu Z, Zhou L, Li X, Ying P, Dong Y, Deng S. 2021. Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles. Cold Reg Sci Technol. 191:103328. doi: 10.1016/j.coldregions.2021.103328.
  • Ranjith PG, Jasinge D, Song JY, Choi SK. 2008. A study of the effect of displacement rate and moisture content on the mechanical properties of concrete: use of acoustic emission. Mech Mater. 40(6):453–469. doi: 10.1016/j.mechmat.2007.11.002.
  • Soloatin VI. 1995. Water migration and ice segregation in the transition zone between thawed and frozen soil. Permafr Periglac Process. 5:185–190.
  • Sugawara K, Sato A, Obara Y, Yanagisako M. 1999. Measurement of permeability of rock by means of X-ray CT. Shigen-to Sozai. 115(11):803–808. doi: 10.2473/shigentosozai.115.803.
  • Sun Q, Ji M, Xue L, Su T. 2015. The influence of moisture content on the acoustic emission at threshold of rock destruction. Acta Geodyn Geomater. 12(3):279–287. doi: 10.13168/AGG.2015.0025.
  • Wang B, Li XB, Yin TB, Ma CD, Yin ZQ, Li ZG. 2010. Split hopkinson pressure bar(SHPB) experiments on dynamic strength of water-saturated sandstone. Chin J Rock Mech Eng. 29(05):1003–1009.
  • Wangler T, Scherer GW. 2008. Finite element analysis of finite element calculation of finite element calculation of clay. Environ Geol. 56(3–4):529–534. doi: 10.1007/s00254-008-1380-3.
  • Xu Y, Dai E. 2018. Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments. Rock Mech Rock Eng. 51(3):747–764. doi: 10.1007/s00603-017-1364-2.
  • Xuan Z-q, Sun Z-m, Wang J-g, Sun W-j, Liang B, Ma Z. 2022. Pore structure evolution and damage creep model of shale subjected to freeze-thaw treatment. J Mater Res Technol. 19:821–836. doi: 10.1016/j.jmrt.2022.05.070.
  • Yang K, Yuan L, Qi LG, et al. 2013. Establishing predictive model for rock uniaxial compressive strength of No.11–2 coal seam roof in Huainan mining area. Chin J Rock Mech Eng. 32(10):1991–1998.
  • Yin Q, Jing H, Ma G, Su H, Liu R. 2018. Investigating the roles of included angle and loading condition on the critical hydraulic gradient of real rock fracture networks. Rock Mech Rock Eng. 51(10):3167–3177. doi: 10.1007/s00603-018-1526-x.
  • Zhang C, Zou P, Wang Y, Jiang T, Lin H, Cao P. 2020. An elasto-visco-plastic model based on stress functions for deformation and damage of water-saturated rocks during the freeze-thaw process. Constr Build Mater. 250:118862. doi: 10.1016/j.conbuildmat.2020.118862.
  • Zhang S, Lai Y, Zhang X, Pu Y, Yu W. 2004. Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze–thaw cycle condition. Tunnelling Underground Space Technol. 19(3):295–302. doi: 10.1016/j.tust.2003.11.011.
  • Zhang ZY, Xiao LZ. 2006. Experimental study of the NMR characteristics in rock under uniaxial load. Nuclear Electron Detection Technol. 26(6):731–734.
  • Zhou H, Li Z, Song YZ, et al. 2013. Chemo-thermodynamical method for precisely preparing rock sample with different water contents. Rock Soil Mech. 34(02):311–315.
  • Zhou K-p, Li B, Li J-l, Deng H-w, BIN F. 2015. Microscopic damage and dynamic mechanical properties of rock under freeze–thaw environment. Trans Nonferrous Met Soc China. 25(4):1254–1261. doi: 10.1016/S1003-6326(15)63723-2.
  • Zhu T, Chen J, Huang D, Luo Y, Li Y, Xu L. 2021. A DEM-based approach for modeling the damage of rock under freeze–thaw cycles. Rock Mech Rock Eng. 54(6):2843–2858. doi: 10.1007/s00603-021-02465-4.