954
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Site response measurements and implications to soil liquefaction potential using microtremor H/V in Greater Metro Manila, Philippines

ORCID Icon, , , &
Article: 2256936 | Received 11 Apr 2023, Accepted 04 Sep 2023, Published online: 05 Oct 2023

References

  • Abeki N, Punongbayan R, Garcia DC, Narag I, Bautista BC, Bautista MLP, Banganan EL, Tabanlar RA, Soneja DS, Masaki K, et al. 1996. Site response evaluation of Metro Manila using microtremor observation. In: 11th World Conference on Earthquake Engineering, Acapulco, Mexico.
  • Andrus R, Stokoe K. 2000. Liquefaction resistance of soils from shear-wave velocity. J Geotech Geoenviron Eng. 126(11):1015–1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015).
  • Arango-Serna S, Herrera M, Cruz A, Sandoval E, Thomson P, Ledezma C. 2021. Use of ambient noise records in seismic engineering: an approach to identify potentially liquefiable sites. Soil Dyn Earthquake Eng. 148:106837. doi: 10.1016/j.soildyn.2021.106837.
  • Beroya M, Aydin A, Tiglao R, Lasala M. 2009. Use of microtremor in liquefaction hazard mapping. Eng Geol. 107(3–4):140–153. doi: 10.1016/j.enggeo.2009.05.009.
  • Beroya M, Aydin A. 2010. A new approach to liquefaction hazard zonation: application to Laoag City, Northern Philippines. Soil Dyn Earthquake Eng. 30(11):1338–1351. doi: 10.1016/j.soildyn.2010.06.007.
  • Boulanger RW, Idriss IM. 2012. Probabilistic standard penetration test–based liquefaction–triggering procedure. J Geotech Geoenviron Eng. 138(10):1185–1195. doi: 10.1061/(ASCE)GT.1943-5606.0000700.
  • Boulanger RW, Idriss IM. 2016. CPT-based liquefaction triggering procedure. J Geotech Geoenviron Eng. 142(2):04015065. doi: 10.1061/(ASCE)GT.1943-5606.0001388.
  • Castellaro S, Mulargia F. 2014. Simplified seismic soil classification: the Vfz matrix. Bull Earthquake Eng. 12(2):735–754. doi: 10.1007/s10518-013-9543-3.
  • Cetin KO, Seed RB, Kiureghian AD, Tokimatsu K, Harder LF, Kayen RE, Moss RES. 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng. 130(12):1314–1340. doi: 10.1061/(ASCE)1090-0241(2004)130:12(1314).
  • Choobbasti A, Naghizadehrokni M, Rezaei S. 2015. Liquefaction assessment by microtremor measurements in Babol city. In: 5th International Conference on Geotechnique, Construction Materials and Environment.
  • Daag A, Halasan OP, Magnaye AA, Grutas R, Solidum R. Jr. 2022. Empirical correlation between standard penetration resistance (SPT-N) and shear wave velocity (Vs) for soils in Metro Manila, Philippines. Appl Sci. 12(16):8067. doi: 10.3390/app12168067.
  • Daag A, Sochayseng K, Arnoco EJ, Serrano A, Solidum RJ. 2023. The use of screw driving sounding in soil assessment in Metro Manila, Philippines. Geotechnical Research. 10(2):51–66. doi: 10.1680/jgere.22.00047.
  • Delgado J, López Casado C, Estévez A, Giner J, Cuenca A, Molina S. 2000. Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool. J Appl Geophys. 45(1):19–32. doi: 10.1016/S0926-9851(00)00016-1.
  • Earthquake Engineering Research Institute. 1994. Earthquake basics brief no. 1. In: institute EER, editor. Oakland (CA). p. 1–8.
  • Gervasio F. 1968. The geology, structures and landscape development of Manila and suburbs. Philippine Geol. 22:178–192.
  • Grutas R, Yamanaka H. 2012. Shallow shear-wave velocity profiles and site response characteristics from microtremor array measurements in Metro Manila, the Philippines. Explor Geophys. 43(4):255–266. doi: 10.1071/EG12031.
  • Guillier B, Cornou C, Kristek JSB-C, Bard P-Y, Fäh D, Moczo P. 2006. Simulation of seismic ambient vibrations: does the H/V provide quantitative information in 2D–3D structure. In: Proceedings of the third international symposium on the effects of surface geology, Grenoble (France).
  • Hardesty K, Wolf L, Bodin P. 2010. Noise to signal: a microtremor study at liquefaction sites in the New Madrid Seismic Zone. Geophysics. 75(3): b 83–B90. doi: 10.1190/1.3374357.
  • Herrera M, Arango S, Cruz A, Sandoval E, Thomson P. 2018. Assessment of Nakamura methodology for evaluating soil liquefaction potential. In: Geotechnical Earthquake Engineering and Soil Dynamics V. doi: 10.1061/9780784481455.009.
  • Huang H, Tseng Y. 2002. Characteristics of soil liquefaction using H/V of microtremors in Yuan-Lin area, Taiwan. Terr Atmos Ocean Sci. 13(3):325–338. doi: 10.3319/TAO.2002.13.3.325(CCE).
  • Ibs-von Seht M, Wohlenberg J. 1999. Microtremor measurements used to map thickness of soft sediments. Bull Seismol Soc Am. 89(1):250–259. doi: 10.1785/BSSA0890010250.
  • Iwasaki T, Arakawa T, Tokida K. 1984. Simplified procedures for assessing soil liquefaction during earthquakes. Int J Soil Dyn Earthquake Eng. 3(1):49–58. doi: 10.1016/0261-7277(84)90027-5.
  • Japan Road Association. 1996. Specifications for highway bridges: part V. In: Seismic Design. Earthquake Resistant Design. Vol. 228.
  • Kang S, Kim K, Kim B. 2021. Assessment of seismic vulnerability using the horizontal-to-vertical spectral ratio (HVSR) method in Haenam, Korea. Geosci J. 25(1):71–81. doi: 10.1007/s12303-020-0040-9.
  • Kayen R, Moss RES, Thompson EM, Seed RB, Cetin KO, Kiureghian AD, Tanaka Y, Tokimatsu K. 2013. Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng. 139(3):407–419. doi: 10.1061/(ASCE)GT.1943-5606.0000743.
  • Kishida H. 1966. Damage to reinforced concrete buildings in Niigata city with special reference to foundation engineering. Soils Found. 6(1):71–88. doi: 10.3208/sandf1960.6.71.
  • Kramer S. 1996. Geotechnical earthquake engineering. Upper Saddle River (NJ): prentice Hall, Inc. (Prentice-Hall International.
  • LeBrun B, Duval A-M, Bard P-Y, Monge O, Bour M, Vidal S, Fabriol H. 2004. Seismic microzonation: a comparison between geotechnical and seismological approaches in Pointe-à-Pitre (French West Indies). Bull Earthquake Eng. 2(1):27–50. doi: 10.1023/B:BEEE.0000038949.91495.91.
  • Lermo J, Chávez-García F. 1994. Are microtremors useful in site response evaluation? Bull Seismol Soc Am. 84(5):1350–1364. doi: 10.1785/BSSA0840051350.
  • Likitlersuang S, Plengsiri P, Mase LZ, Tanapalungkorn W. 2020. Influence of spatial variability of ground on seismic response analysis: a case study of Bangkok subsoils. Bull Eng Geol Environ. 79(1):39–51. doi: 10.1007/s10064-019-01560-9.
  • Louie J, Abbott R, Anooshehpoor R, Biasi G, Beeston H. 2001. Refraction microtremor as an alternative to boreholes for earthquake hazard assessments. In: AGU Fall Meeting Abstracts.
  • Maeda Y, Yamato S, Sugano Y, Sakai G, Suemasa N, Tanaka T. 2015. Evaluation of soil liquefaction potential by Screw Driving Sounding test in residential areas. In: 6th International Conference on Earthquake Geotechnical Engineering, Christchurch (New Zealand).
  • Mase L, Agustina S, Hardiansyah H, Farid M, Supriani F, Tanapalungkorn W, Likitlersuang S. 2023. Application of simplifed energy concept for liquefaction prediction in Bengkulu City, Indonesia.Geotech Geol Eng. 41(3): 1999–2021. doi: 10.1007/s10706-023-02388-7.
  • Mase L, Likitlersuang S, Tobita T. 2018. Non-linear site response analysis of soil sites in Northern Thailand during the Mw 6.8 Tarlay earthquake. Eng J. 22(3):291–303. doi: 10.4186/ej.2018.22.3.291.
  • Mase L, Likitlersuang S, Tobita T. 2022. Verification of liquefaction potential during the strong earthquake at the border of Thailand-Myanmar. J Earthquake Eng. 26(4):2023–2050. doi: 10.1080/13632469.2020.1751346.
  • Mase LZ, Tanapalungkorn W, Likitlersuang S, Ueda K, Tobita T. 2022. Liquefaction analysis of Izumio sands under variation of ground motions during strong earthquake in Osaka, Japan. Soils Found. 62(5):101218. doi: 10.1016/j.sandf.2022.101218.
  • Masó MS. 1910. Catalogue of violent and destructive earthquakes in the Philippines with an appendix: earthquakes in the Marianas Islands (1599–1909). Manila: Bureau of Printing.
  • Meneisy A, Mostafa T, Omran A. 2020. Soft sediment characterization using seismic techniques at Beni Suef City, Egypt. J Environ Eng Geophys. 25(3):391–401. doi: 10.32389/JEEG19-069.
  • Metro Manila Earthquake Impact Reduction Study. 2004. MMEIRS final report volume 2. [accessed 2021 Nov 14]. https://iskwiki.upd.edu.ph/reports/MMEIRS/.
  • Mittal RK, Mahalakshmi N, Singh S. 2013. Evaluation of liquefaction screening criterion based on standard penetration test values. In: Structures Congress 2013: Bridging Your Passion with Your Profession. p. 2983–2988. doi: 10.1061/9780784412848.260.
  • Moisidi M, Vallianatos F, Soupios P, Kershaw S. 2012. Spatial spectral variations of microtremors and electrical resistivity tomography surveys for fault determination in southwestern Crete, Greece. J Eng Geophys. 9(3):261–270. doi: 10.1088/1742-2132/9/3/261.
  • Molnar S, Cassidy JF, Castellaro S, Cornou C, Crow H, Hunter JA, Matsushima S, Sánchez-Sesma FJ, Yong A. 2018. Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: state of the art. Surv Geophys. 39(4):613–631. doi: 10.1007/s10712-018-9464-4.
  • Molnar S, Sirohey A, Assaf J, Bard P-Y, Castellaro S, Cornou C, Cox B, Guillier B, Hassani B, Kawase H, et al. 2022. A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method. J Seismol. 26(4):653–685. doi: 10.1007/s10950-021-10062-9.
  • Moss RE, Seed RB, Kayen RE, Stewart JP, Kiureghian AD, Cetin KO. 2006. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J Geotech Geoenviron Eng. 132(8):1032–1051. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1032).
  • Nakamura Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep RTRI. 30(1):25–33.
  • Nakamura Y. 1996. Real time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. Q Rep RTRI. 37(3):112–127.
  • Nakamura Y. 1997. Seismic vulnerability indices for ground and structures using microtremor. In: World Congress on Railway Research; Florence (Italy).
  • Nakamura Y. 2000. Clear identification of fundamental idea of Nakamura’s technique and applications. In: 12th World Conference Earthquake Engineering; Auckland (New Zealand).
  • Nakamura Y. 2019. What is the Nakamura method? Seismol Res Lett. 90:1437–1443. doi: 10.1785/0220180376.
  • Narag IC, Banganan EL, Lanuza AG, Deocampo JB, Lasala M, Olavere E, Penarubia H, Bautista MLP, Bautista BC, Garcia DC. 2000. Microtremor observation of Metropolitan Manila. In: International Workshop on the Integration of Data for Seismic Disaster Mitigation in Metro Manila.
  • Nelson A, Personius S, Rimando R, Punongbayan R, Tuñgol N, Mirabueno H, Rasdas A. 2000. Multiple large earthquakes in the past 1500 Years on a fault in Metropolitan Manila, the Philippines. Bull Seismol Soc Am. 90(1):73–85. doi: 10.1785/0119990002.
  • Orense R, Mirjafari Y, Suemasa N. 2019. Screw driving sounding: a new test for field characterisation. Geotech Res. 6(1):28–38. doi: 10.1680/jgere.18.00024.
  • Oubaiche E, Chatelain J, Bouguern B, Bensalem B, Machane D, Hellel M, Khaldaoui F, Guillier B. 2012. Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast. Seismol Res Lett. 83(6):1038–1046. doi: 10.1785/0220120004.
  • Parolai S, Bormann P, Milkereit C. 2002. New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne Area (Germany). Bull Seismol Soc Am. 92(6):2521–2527. doi: 10.1785/0120010248.
  • PHIVOLCS. 2017. The Philippine earthquake model: a probabilistic seismic hazard assessment of the Philippines and of Metro Manila. Quezon City (Philippines): DOST-PHIVOLCS.
  • PHIVOLCS. n.d.-a. 1968 August 02 Ms7.3 Casiguran earthquake. [accessed 2022 Apr 24]. https://www.phivolcs.dost.gov.ph/index.php/earthquake/destructive-earthquake-of-the-philippines/2-uncategorised/206-1968-august-02-ms7-3-casiguran-earthquake.
  • PHIVOLCS. n.d.-b. 1990 July 16 Ms7.8 Luzon earthquake. [accessed 2022 Apr 24]. https://www.phivolcs.dost.gov.ph/index.php/earthquake/destructive-earthquake-of-the-philippines/2-uncategorised/212-1990-july-16-ms7-9-luzon-earthquake.
  • Qodri M, Mase L, Likitlersuang S. 2021. Non-linear site response analysis of Bangkok subsoils due to earthquakes triggered by Three Pagodas Fault. Eng J. 25(1):43–52. doi: 10.4186/ej.2021.25.1.43.
  • Ramos A, Viana de Fonseca A, Carrilho Gomes R. 2019. Evaluating soil liquefaction potential using Nakamura methodology in an experimental site. In: 7th International Conference on Earthquake Geotechnical Engineering; Rome (Italy).
  • Rimando R, Knuepfer P. 2006. Neotectonics of the Marikina Valley fault system (MVFS) and tectonic framework of structures in northern and central Luzon, Philippines. Tectonophysics. 415(1–4):17–38. doi: 10.1016/j.tecto.2005.11.009.
  • Rodolfo K. 2014. On the geological hazards that threaten existing and proposed reclamations of Manila Bay. Philippine Sci Lett. 7(1):228–240.
  • Sathyaseelan R, Mundepi A, Kumar N. 2017. Quantifying seismic vulnerability, dynamical shear strain and liquefaction of the Quaternary deposits in the Doon valley near the Main Boundary Thrust in the Northwest Himalaya, India. Quat Int. 462:162–175. doi: 10.1016/j.quaint.2017.05.018.
  • Seed H, Idriss I. 1971. Simplified procedure for evaluation of soil liquefaction potential. J Soil Mech Found Div. 97(9):1249–1273. doi: 10.1061/JSFEAQ.0001662.
  • Seed H, Idriss I. 1982. Ground motions and soil liquefaction during earthquakes. In: Idriss IM, editor. Berkeley (CA): Earthquake Engineering Research Institute.
  • SESAME. 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. Deliverable D23.12 No.: WP12
  • Singh A, Shukla A, Kumar M, Thakkar M. 2017. Characterizing surface geology, liquefaction potential, and maximum intensity in the Kachchh Seismic Zone, Western India, through microtremor analysis. Bull Seismol Soc Am. 107(3):1277–1292. doi: 10.1785/0120160264.
  • Ting K. 2010. Confusion matrix. In: Sammut C, Webb GI, editors. Encyclopedia of machine learning. Boston, MA: Springer; p. 1061.
  • Towhata I. 2008. Geotechnical earthquake engineering. Heidelberg (Germany): Springer. (Springer Series in Geomechanics and Geoengineering.
  • Uebayashi H, Kawabe H, Kamae K. 2012. Reproduction of microseism H/V spectral features using a three-dimensional complex topographical model of the sediment-bedrock interface in the Osaka sedimentary basin. Geophys J Int. 189(2):1060–1074. doi: 10.1111/j.1365-246X.2012.05408.x.
  • Wathelet M, Chatelain J-L, Cornou C, Giulio GD, Guillier B, Ohrnberger M, Savvaidis A. 2020. Geopsy: a user-friendly open-source tool set for ambient vibration processing. Seismol Res Lett. 91(3):1878–1889. doi: 10.1785/0220190360.
  • Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF, Hynes ME, et al. 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng. 127(10):817–833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817).
  • Youd TL, Perkins DM. 1978. Mapping Liquefaction-Induced Ground Failure Potential. J Geotech Eng Div. 104(4):433–446. doi: 10.1061/AJGEB6.0000612.