1,194
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Unlocking the hidden potential: groundwater zone mapping using AHP, remote sensing and GIS techniques

, , ORCID Icon, , , ORCID Icon, & show all
Article: 2264458 | Received 06 Jul 2023, Accepted 23 Sep 2023, Published online: 19 Oct 2023

References

  • Akhtar N, Izzuddin Syakir M, Talha Anees M, et al. 2020. Characteristics and assessment of groundwater. United Kingdom: IntechOpen. doi: 10.5772/intechopen.93800.
  • Anusha BN, Babu KR, Kumar BP, Kumar PR, Rajasekhar M. 2022. Geospatial approaches for monitoring and mapping of water resources in semi-arid regions of Southern India. Environ Chall. 8:100569. doi: 10.1016/j.envc.2022.100569.
  • Arulbalaji P, Padmalal D, Sreelash K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: a case study from Southern Western Ghats, India. Sci Rep. 9(2082). doi: 10.1038/s41598-019-38567-x.
  • Badapalli PK, Nakkala AB, Kottala RB, Gugulothu S. 2022. Geo environmental green growth towards sustainable development in semi-arid regions using physicochemical and geospatial approaches. Environ Sci Pollut Res. doi: 10.1007/s11356-022-24588-z.
  • Bhadran A, Girishbai D, Jesiya NP, Gopinath G, Krishnan RG, Vijesh VK. 2022. A GIS based fuzzy-AHP for delineating groundwater potential zones in tropical river basin, southern part of India. Geosyst Geoenviron. 1(4):100093. doi: 10.1016/j.geogeo.2022.100093.
  • Boretti A, Rosa L. 2019. Reassessing the projections of the World Water Development Report. NPJ Clean Water. 2(15). doi: 10.1038/s41545-019-0039-9.
  • Chakraborty B, Roy S, Bera B, Adhikary PP, Bhattacharjee S, Sengupta D, Shit PK. 2022. Evaluation of groundwater quality and its impact on human health: a case study from Chotanagpur plateau fringe region in India. Appl Water Sci. 12(25). doi: 10.1007/s13201-021-01539-6.
  • Chenini I, Ben Mammou A. 2010. Groundwater recharge study in arid region: an approach using GIS techniques and numerical modeling. Comput Geosci. 36(6):801–817. doi: 10.1016/j.cageo.2009.06.014.
  • Choudhary S, Pingale SM, Khare D. 2022. Delineation of groundwater potential zones of upper Godavari sub-basin of India using bi-variate, MCDM and advanced machine learning algorithms. Geocarto Int. 37(27):15063–15093. doi: 10.1080/10106049.2022.2093992.
  • DGWRI. 2021. Dynamic ground water resources of india. central ground water board department of water resources. River Development & Ganga Rejuvenation Ministry of Jal Shakti Government of India, Faridabad.
  • Dhawan V. 2017. Water and Agriculture in India Background paper for the South Asia expert panel during the Global Forum for Food and Agriculture (GFFA) 2017. German Asia-Pacific Business Association
  • El Jazouli A, Barakat A, Khellouk R. 2019. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron Disasters. 6(3) doi: 10.1186/s40677-019-0119-7.
  • Gao C, Hao M, Chen J, Gu C. 2021. Simulation and design of joint distribution of rainfall and tide level in Wuchengxiyu Region, China. Urban Clim. 40:101005. doi: 10.1016/j.uclim.2021.101005.
  • Gautam VK, Pande CB, Kothari M, Singh PK, Agrawal A. 2023. Exploration of groundwater potential zones mapping for hard rock region in the Jakham river basin using geospatial techniques and aquifer parameters. Adv Space Res. 71(6):2892–2908. doi: 10.1016/j.asr.2022.11.022.
  • Gong S, Bai X, Luo G, Li C, Wu L, Chen F, Ran C, Xi H, Zhang S. 2023. Climate change has enhanced the positive contribution of rock weathering to the major ions in riverine transport. Global Planet Change. 228:104203. doi: 10.1016/j.gloplacha.2023.104203.
  • Goswami T, Ghosal S. 2022. Understanding the suitability of two MCDM techniques in mapping the groundwater potential zones of semi-arid Bankura District in eastern India. Groundw Sustain Dev. 17:100727. doi: 10.1016/j.gsd.2022.100727.
  • Grozavu A. 2017. Application of AHP method for mapping slope geomorphic phenomena. In International multidisciplinary scientific GeoConference SGEM. doi: 10.5593/sgem2017/23/S11.046.
  • Guru B, Seshan K, Bera S. 2017. Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. J King Saud Univ Sci. 29(3):333–347. doi: 10.1016/j.jksus.2016.08.003.
  • Jhariya DC, Khan R, Mondal KC, Kumar T, K I, Singh VK. 2021. Assessment of groundwater potential zone using GIS-based multi-influencing factor (MIF), multi-criteria decision analysis (MCDA) and electrical resistivity survey techniques in Raipur city, Chhattisgarh, India. J Water Supply Res Technol Aqua. 70(3):375–400. doi: 10.2166/aqua.2021.129.
  • Kandekar VU, Pande CB, Rajesh J, Atre AA, Gorantiwar SD, Kadam SA, Gavit B. 2021. Surface water dynamics analysis based on sentinel imagery and Google Earth Engine Platform: a case study of Jayakwadi dam. Sustain Water Resour Manag. 7(3):44. doi: 10.1007/s40899-021-00527-7.
  • Khadri. 2013. Groundwater quality mapping of PTU-1 Watershed in Akola district of Maharashtra India using geographic information system techniques. Int J Sci Eng Res. 4(9):387–397.
  • Khan MYA, ElKashouty M, Subyani AM, Tian F. 2023b. Morphometric determination and digital geological mapping by RS and GIS Techniques in Aseer–Jazan Contact, Southwest Saudi Arabia. Water. 15(13):2438. doi: 10.3390/w15132438.
  • Khan MYA, ElKashouty M, Subyani AM, Tian F, Gusti W. 2022a. GIS and RS intelligence in delineating the groundwater potential zones in Arid Regions: a case study of southern Aseer, southwestern Saudi Arabia. Appl Water Sci. 12(1):3. doi: 10.1007/s13201-021-01535-w.
  • Khan MYA, ElKashouty M, Tian F. 2022b. Mapping groundwater potential zones using analytical hierarchical process and multicriteria evaluation in the central eastern desert, Egypt. Water. 14(7):1041. doi: 10.3390/w14071041.
  • Khan MYA, ElKashouty M, Zaidi FK, Egbueri JC. 2023a. Mapping aquifer recharge potential zones (ARPZ) using integrated geospatial and analytic hierarchy process (AHP) in an arid region of Saudi Arabia. Remote Sens. 15(10):2567. doi: 10.3390/rs15102567.
  • Kumar BP, Anusha BN, Babu KR, Sree PP. 2023. Identification of climate change impact and thermal comfort zones in semi-arid regions of AP, India using LST and NDBI techniques. J Cleaner Prod. 407:137175. doi: 10.1016/j.jclepro.2023.137175.
  • Kumar BP, Babu KR, Anusha BN, Rajasekhar M. 2022. Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI/TIRS, LST, and NDVI approach. Environ Chall. 8:100578. doi: 10.1016/j.envc.2022.100578.
  • Kumari S, Kumar D, Kumar M, Pande CB. 2023. Modeling of standardized groundwater index of Bihar using machine learning techniques. Phys Chem Earth A/B/C. 130:103395. doi: 10.1016/j.pce.2023.103395.
  • Lee S, Kim Y-S, Oh H-J. 2012. Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manage. 96(1):91–105. doi: 10.1016/j.jenvman.2011.09.016.
  • Li Y,Mi W,Ji L,He Q,Yang P,Xie S,Bi Y. 2023. Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality. Sci Total Environ. 878:162559.doi: 10.1016/j.scitotenv.2023.162559.
  • Maity B, Kumar Mallick S, Das P, Rudra S. 2022. Comparative analysis of groundwater potentiality zone using fuzzy AHP, frequency ratio and Bayesian weights of evidence methods. Appl Water Sci. 12(63). doi: 10.1007/s13201-022-01591-w.
  • Marín Celestino A, Martínez Cruz D, Otazo Sánchez E, Gavi Reyes F, Vásquez Soto D. 2018. Groundwater quality assessment: an improved approach to K-means clustering, principal component analysis and spatial analysis: a case study. Water. 10(4):437. doi: 10.3390/w10040437.
  • Ma S, Qiu H, Yang D, Wang J, Zhu Y, Tang B, Sun K, Cao M. 2023. Surface multi-hazard effect of underground coal mining. Landslides. 20(1):39–52. doi: 10.1007/s10346-022-01961-0.
  • Mobasheri A, Pirotti F, Agugiaro G. 2020. Open-source geospatial tools and technologies for urban and environmental studies. Open Geospatial Data Softw Stand. 5(5). doi: 10.1186/s40965-020-00078-2.
  • Mogaji KA, Lim HS, Abdullah K. 2015. Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arab J Geosci. 8(5):3235–3258. doi: 10.1007/s12517-014-1391-1.
  • Mohamed A, Worku H. 2020. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Clim. 31:100545. doi: 10.1016/j.uclim.2019.100545.
  • Moharir KN, Pande CB, Gautam VK, Singh SK, Rane NL. 2023. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Environ Res. 228:115832. doi: 10.1016/j.envres.2023.115832.
  • Nag SK, Chakraborty S. 2003. Influence of rock types and structures in the development of drainage network in hard rock area. J Indian Soc Remote Sens. 31(1):25–35. doi: 10.1007/BF03030749.
  • Naghibi SA, Pourghasemi HR, Dixon B. 2016. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess. 188(1):44. doi: 10.1007/s10661-015-5049-6.
  • Nguyen PT, Ha DH, Avand M, Jaafari A, Nguyen HD, Al-Ansari N, Van Phong T, Sharma R, Kumar R, Le HV, et al. 2020. Soft computing ensemble models based on logistic regression for groundwater potential mapping. Appl Sci. 10(7):2469. doi: 10.3390/app10072469.
  • Ozdemir A. 2011. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol. 411(3–4):290–308. doi: 10.1016/j.jhydrol.2011.10.010.
  • Ozegin KO, Ilugbo SO, Ogunseye TT. 2023. Groundwater exploration in a landscape with heterogeneous geology: an application of geospatial and analytical hierarchical process (AHP) techniques in the Edo north region, in Nigeria. Groundw Sustain Dev. 20(2):100871. doi: 10.1016/j.gsd.2022.100871.
  • Pande CB. 2020a. Watershed management and development. In Sustainable watershed development. Springerbriefs in water science and technology. Cham: Springer. doi: 10.1007/978-3-030-47244-3_2.
  • Pande CB. 2020b. Thematic mapping for watershed development. In Sustainable watershed development. Springerbriefs in water science and technology. Cham: Springer. doi: 10.1007/978-3-030-47244-3_3.
  • Pande CB. 2022. Land use/land cover and change detection mapping in Rahuri watershed area (MS), India using the google earth engine and machine learning approach. Geocarto Int. 37(26):13860–13880. doi: 10.1080/10106049.2022.2086622.
  • Pande CB. 2023. Hydrogeology. In Geology, petrography and geochemistry of basaltic rock in Central India. Cham: Springer. doi: 10.1007/978-3-031-30574-0_6.
  • Pande CB, Moharir KN 2021. Groundwater resources development and planning in the semi-arid region, 1st ed, Cham: Springer. doi: 10.1007/978-3-030-68124-1.
  • Pande CB, Moharir KN, Khadri S. 2021. Watershed planning and development based on morphometric analysis and remote sensing and GIS Techniques: A case study of semi-arid watershed in Maharashtra, India. In Groundwater resources development and planning in the semi-arid region. Cham: Springer. doi: 10.1007/978-3-030-68124-1_11.
  • Pande CB, Moharir KN, Panneerselvam B, Singh SK, Elbeltagi A, Pham QB, Varade AM, Rajesh J. 2021. Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Appl Water Sci. 11(12). doi: 10.1007/s13201-021-01522-1.
  • Pande CB, Moharir KN, Singh SK, Elbeltagi A, Pham QB, Panneerselvam B, Varade AM, Kouadri S. 2022. Groundwater flow modeling in the basaltic hard rock area of Maharashtra, India. Appl Water Sci. 12(1):12. doi: 10.1007/s13201-021-01525-y.
  • Pant S, Kumar A, Ram M, Klochkov Y, Sharma HK. 2022. Consistency indices in analytic hierarchy process: a review. Mathematics. 10(8):1206. doi: 10.3390/math10081206.
  • Patil CA, Nalawade PM, Gadakh BL, Khangar NV. 2022. Statistical assessment of groundwater quality using hydrochemical parameters for drinking water of rural areas in Nashik district, Maharashtra, India. Water Sci. 36(1):136–143. doi: 10.1080/23570008.2022.2152175.
  • Patode RS, Pande CB, Nagdeve MB, Moharir KN, Wankhade RM. 2017. Planning of conservation measures for watershed management and development by using geospatial technology – a case study of Patur Watershed in Akola District of Maharashtra. Curr World Environ. 12(3):706–714. doi: 10.12944/CWE.12.3.22.
  • Pourtaghi ZS, Pourghasemi HR. 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province. Iran. Hydrogeol J. 22(3):643–662. doi: 10.1007/s10040-013-1089-6.
  • Rahmati O, Nazari Samani A, Mahdavi M, Pourghasemi HR, Zeinivand H. 2015. Groundwater potential mapping at Kurdistan Region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 8(9):7059–7071. doi: 10.1007/s12517-014-1668-4.
  • Rahmati O, Pourghasemi HR, Melesse AM. 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. CATENA. 137:360–372. doi: 10.1016/j.catena.2015.10.010.
  • Rai SN, Thiagarajan S, Kumari YR. 2011. Exploration for groundwater in the basaltic Deccan traps terrain in Katol Taluk, Nagpur District, India. Curr Sci. 101:1198–1205.
  • Rajasekhar, M., Upendra, B., Raju, GS, Anand (2022) Identification of groundwater potential zones in southern India using geospatial and decision-making approaches. Appl Water Sci. 12(68). doi: 10.1007/s13201-022-01603-9.
  • Ravichandran R, Ayyavoo R, Rajangam L, Madasamy N, Murugaiyan B, Shanmugam S., 2022. Identification of groundwater potential zone using analytical hierarchical process (AHP) and multi-criteria decision analysis (MCDA) for Bhavani river basin, Tamil Nadu, southern India. Groundw Sustain Dev. 18:100806. doi: 10.1016/j.gsd.2022.100806.
  • Razandi Y, Pourghasemi HR, Neisani NS, Rahmati O. 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inf. 8(4):867–883. doi: 10.1007/s12145-015-0220-8.
  • Rizeei HM, Pradhan B, Saharkhiz MA, Lee S. 2019. Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J Hydrol. 579:124172. doi: 10.1016/j.jhydrol.2019.124172.
  • Sahu U, Panaskar D, Wagh V, Mukate S. 2018. An extraction, analysis, and prioritization of Asna river sub-basins, based on geomorphometric parameters using geospatial tools. Arab J Geosci. 11(17):517. doi: 10.1007/s12517-018-3870-2.
  • Salvacion AR. 2022. Groundwater potential mapping using maximum entropy. In Advances in geographical and environmental sciences. Singapore: Springer; p. 239–256. doi: 10.1007/978-981-16-6573-8_13.
  • Senapati U, Das TK. 2022. GIS-based comparative assessment of groundwater potential zone using MIF and AHP techniques in Cooch Behar district, West Bengal. Appl Water Sci. 12(43). doi: 10.1007/s13201-021-01509-y.
  • Shebl A, Abdelaziz MI, Ghazala H, Araffa SAS, Abdellatif M, Csámer Á. 2022. Multi-criteria ground water potentiality mapping utilizing remote sensing and geophysical data: A case study within Sinai Peninsula, Egypt. Egypt J Remote Sens Space Sci. 25(3):765–778. doi: 10.1016/j.ejrs.2022.07.002.
  • Shelar RS, Shinde SP, Pande CB, Moharir KN, Orimoloye IR, Mishra AP, Varade AM. 2022. Sub-watershed prioritization of Koyna river basin in India using multi criteria analytical hierarchical process, remote sensing and GIS techniques. Phys Chem Earth. 128:103219. doi: 10.1016/j.pce.2022.103219.
  • Srinivas R, Bhakar P, Singh AP. 2015. Groundwater quality assessment in some selected area of Rajasthan, India using fuzzy multi-criteria decision making tool. Aquat Procedia. 4:1023–1030. doi: 10.1016/j.aqpro.2015.02.129.
  • The World Bank. 2022. World water day 2022: How India is addressing its water needs. World Bank. https://www.worldbank.org/en/country/india/brief/world-water-day-2022-how-india-is-addressing-its-water-needs.
  • Tolche AD. 2021. Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geol Ecol Landsc. 5(1):65–80. doi: 10.1080/24749508.2020.1728882.
  • Trivedi A, Awasthi MK, Gautam VK, Pande CB, Din NM. 2023. Evaluating the groundwater recharge requirement and restoration in the Kanari river, India, using SWAT model. Environ Dev Sustain. doi: 10.1007/s10668-023-03235-8.
  • Wollmann D, Steiner MTA, Vieira GE, Steiner PA. 2013. Details of the analytic hierarchy process technique for the evaluation of health insurance companies. Production. 24(3):583–593. doi: 10.1590/S0103-65132013005000070.
  • Wu B, Quan Q, Yang S, Dong Y. 2023. A social-ecological coupling model for evaluating the human–water relationship in basins within the Budyko framework. J Hydrol. 619:129361. doi: 10.1016/j.jhydrol.2023.129361.
  • Yahiaoui B, Agoubi B, Kharroubi A. 2021. Groundwater potential recharge areas delineation using groundwater potential recharge index (GPRI) within arid areas: Ghomrassen, south Tunisia. Arab J Geosci. 14(11):919. doi: 10.1007/s12517-021-07173-5.
  • Yin H, Wu Q, Yin S, Dong S, Dai Z, Soltanian MR. 2023a. Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest. J Hydrol. 616:128813. doi: 10.1016/j.jhydrol.2022.128813.
  • Yin L, Wang L, Keim BD, Konsoer K, Yin Z, Liu M, Zheng W. 2023b. Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China. Ecol Indic. 154:110837. doi: 10.1016/j.ecolind.2023.110837.
  • Yuan C, Li Q, Nie W, Ye C. 2023. A depth information-based method to enhance rainfall-induced landslide deformation area identification. Measurement. 219:113288. doi: 10.1016/j.measurement.2023.113288.
  • Zhao M, Zhou Y, Li X, Cheng W, Zhou C, Ma T, Li M, Huang K. 2020. Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sens Environ. 248:111980. doi: 10.1016/j.rse.2020.111980.
  • Zhu G, Liu Y, Shi P, Jia W, Zhou J, Liu Y, Ma X, Pan H, Zhang Y, Zhang Z, et al. 2022. Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China. Earth Syst Sci Data. 14(8):3773–3789. doi: 10.5194/essd-14-3773-2022.