884
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Real-time flash flood forecasting approach for development of early warning systems: integrated hydrological and meteorological application

, , &
Article: 2269295 | Received 25 Jul 2023, Accepted 05 Oct 2023, Published online: 27 Oct 2023

References

  • Adams TE, Dymond RL. 2019. Possible hydrologic forecasting improvements resulting from advancements in precipitation estimation and forecasting for a real-time flood forecast system in the Ohio River Valley, USA. J Hydrol. 579:124138. doi: 10.1016/j.jhydrol.2019.124138.
  • Alfieri L, Pappenberger F, Wetterhall F, Haiden T, Richardson D, Salamon P. 2014. Evaluation of ensemble streamflow predictions in Europe. J Hydrol. 517:913–922. doi: 10.1016/j.jhydrol.2014.06.035.
  • Alfieri L, Thielen J, Pappenberger F. 2012. Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland. J Hydrol. 424-425:143–153. doi: 10.1016/j.jhydrol.2011.12.038.
  • Apip, Sayama T, Tachikawa Y, Takara K. 2012. Spatial lumping of a distributed rainfall-sediment-runoff model and its effective lumping scale. Hydrol Process. 26( 6): 855–871, doi: 10.1002/hyp.8300.
  • Berkhahn S, Fuchs L, Neuweiler I. 2019. An ensemble neural network model for real-time prediction of urban floods. J Hydrol. 575:743–754. doi: 10.1016/j.jhydrol.2019.05.066.
  • Bhatt CM, Rao GS, Diwakar PG, Dadhwal VK. 2017. Development of flood inundation extent libraries over a range of potential flood levels: a practical framework for quick flood response. Geomatics Nat Hazards Risk. 8(2):384–401. doi: 10.1080/19475705.2016.1220025.
  • Brown JD, Wu L, He M, Regonda S, Lee H, Seo DJ. 2014. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification. J Hydrol. 519:2869–2889. doi: 10.1016/j.jhydrol.2014.05.028.
  • Chang MJ, Chang HK, Chen YC, Lin GF, Chen PA, Lai JS, Tan YC. 2018. A support vector machine forecasting model for typhoon flood inundation mapping and early flood warning systems. Water. 10(12):1734. doi: 10.3390/w10121734.
  • Clark RA, Gourley JJ, Flamig ZL, Hong Y, Clark E. 2014. CONUS-wide evaluation of national weather service flash flood guidance products. Weather Forecast. 29(2):377–392. doi: 10.1175/WAF-D-12-00124.1.
  • Cloke HL, Pappenberger F. 2009. Ensemble flood forecasting: a review. J Hydrol. 375(3-4):613–626. doi: 10.1016/j.jhydrol.2009.06.005.
  • Corral C, Berenguer M, Sempere-Torres D, Poletti L, Silvestro F, Rebora N. 2019. Comparison of two early warning systems for regional flash flood hazard forecasting. J Hydrol. 572:603–619. doi: 10.1016/j.jhydrol.2019.03.026.
  • Cuo L, Pagano TC, Wang QJ. 2011. A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. J Hydrometeorol. 12(5):713–728. doi: 10.1175/2011JHM1347.1.
  • Demargne J, Wu L, Regonda SK, Brown JD, Lee H, He M, Seo DJ, Hartman R, Herr HD, Fresch M, et al. 2014. The science of NOAA’s operational hydrologic ensemble forecast service. Bull Amer Meteor Soc. 95(1):79–98. doi: 10.1175/BAMS-D-12-00081.1.
  • Dimri AP, Thayyen RJ, Kibler K, Stanton A, Jain SK, Tullos D, Singh VP. 2016. A review of atmospheric and land surface processes with emphasis on flood generation in the Southern Himalayan rivers. Sci Total Environ. 556:98–115. doi: 10.1016/j.scitotenv.2016.02.206.
  • Duan Q, Sorooshian S, Gupta V. 1992. Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resour Res. 28(4):1015–1031. doi: 10.1029/91WR02985.
  • Duan Q, Sorooshian S, Gupta VK. 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol. 158(3-4):265–284. doi: 10.1016/0022-1694(94)90057-4.
  • Emerton RE, Stephens EM, Pappenberger F, Pagano TC, Weerts AH, Wood AW, Salamon P, Brown JD, Hjerdt N, Donnelly C, et al. 2016. Continental and global scale flood forecasting systems. Wiley Interdiscip Rev Water. 3(3):391–418. doi: 10.1002/wat2.1137.
  • Enomoto T. 2019. Influence of the track forecast of Typhoon Prapiroon on the heavy rainfall in Western Japan in July 2018. Sci Online Lett Atmos. 15A(0):66–71. doi: 10.2151/sola.15A-012.
  • Ferretti R, Lombardi A, Tomassetti B, Sangelantoni L, Colaiuda V, Mazzarella V, Maiello I, Verdecchia M, Redaelli G. 2020. A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy. Hydrol Earth Syst Sci. 24(6):3135–3156. doi: 10.5194/hess-24-3135-2020.
  • Georgakakos KP. 1986. On the design of national, real-time warning systems with capability for site-specific, flash-flood forecasts. Bull Amer Meteor Soc. 67(10):1233–1239. doi: 10.1175/1520-0477(1986)067 < 1233:OTDONR>2.0.CO;2.
  • Georgakakos KP. 2018. Overview of the global flash flood guidance system and its application worldwide. WMO Bull. 67(1):37–42.
  • Gupta HV, Kling H, Yilmaz KK, Martinez GF. 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol. 377(1-2):80–91. doi: 10.1016/j.jhydrol.2009.08.003.
  • Hapuarachchi H, AP, Wang QJ, Pagano TC. 2011. A review of advances in flash flood forecasting. Hydrol Process. 25(18):2771–2784. doi: 10.1002/hyp.8040.
  • Harada M, Mori M, Tasai H, Hiramatsu K. 2006. Evaluation of characteristics of TOPMODEL parameters using SCE-UA method. Sci Bull Fac Agric, Kyushu Univ. 61(2):261–272.
  • Hsiao LF, Yang MJ, Lee CS, Kuo HC, Shih DS, Tsai CC, Wang CJ, Chang LY, Chen DYC, Feng L, et al. 2013. Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J Hydrol. 506:55–68. doi: 10.1016/j.jhydrol.2013.08.046.
  • Huang JC, Yu CK, Lee JY, Cheng LW, Lee TY, Kao SJ. 2012. Linking typhoon tracks and spatial rainfall patterns for improving flood lead time predictions over a mesoscale mountainous watershed. Water Resour Res. 48(9):W09540. doi: 10.1029/2011WR011508.
  • Ikeuchi H, Hirabayashi Y, Yamazaki D, Muis S, Ward PJ, Winsemius HC, Verlaan M, Kanae S. 2017. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: model development and its application to 2007 Cyclone Sidr in Bangladesh. J Adv Model Earth Syst. 9(4):1847–1862 doi: 10.1002/2017MS000943.
  • IPCC. 2018. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, et al., editors. Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva (Switzerland): World Meteorological Organization; p. 32.
  • Jhong BC, Wang JH, Lin GF. 2017. An integrated two-stage support vector machine approach to forecast inundation maps during typhoons. J Hydrol. 547:236–252. doi: 10.1016/j.jhydrol.2017.01.057.
  • JMA. 2018. Heavy Rainfall in July 2018. https://www.data.jma.go.jp/obd/stats/data/bosai/report/2018/20180713/20180713.html. [accessed 2022 November 20].
  • JMA. 2020. [dataset]. Rainfall dataset of the Japan Meteorological Agency. https://www.data.jma.go.jp/risk/obsdl/index.php# [accessed 2022 November 20].
  • Kida S, Yamazaki D. 2020. The mechanism of the freshwater outflow through the Ganges-Brahmaputra-Meghna Delta. Water Resour Res. 56(6):e2019WR026412. doi: 10.1029/2019WR026412.
  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, et al. 2015. The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn. 93(1):5–48. doi: 10.2151/jmsj.2015-001.
  • Kojima T, Takara K, Oka T, Chitose T. 1998. Resolution influence on the flood runoff analysis result of raster spatial information. Water Eng Pap. 42:157–162. Japanese. doi: 10.2208/prohe.42.157.
  • Kotsuki S, Terasaki K, Kanemaru K, Satoh M, Kubota T, Miyoshi T. 2019. Predictability of record-breaking rainfall in Japan in July 2018: ensemble forecast experiments with the near-real-time global atmospheric data assimilation system NEXRA. Sci Online Lett Atmos. 15A(0):1–7. doi: 10.2151/sola.15A-001.
  • Kuang D, Liao K-H. 2020. Learning from floods: linking flood experience and flood resilience. J Environ Manage. 271:111025. doi: 10.1016/j.jenvman.2020.111025.
  • Li J, Chen Y, Wang H, Qin J, Li J, Chiao S. 2017. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model. Hydrol Earth Syst Sci. 21(2):1279–1294. doi: 10.5194/hess-21-1279-2017.
  • Liechti K, Zappa M, Fundel F, Germann U. 2013. Probabilistic evaluation of ensemble discharge nowcasts in two nested Alpine basins prone to flash floods. Hydrol Processes. 27(1):5–17. doi: 10.1002/hyp.9458.
  • Luo, P., Takara, K., He, B., Nover, D., Apip, 2014. Palaeoflood simulation of the Kamo River basin using a grid-cell distributed rainfall run-off model. J Flood Risk Manag. 7(2):182–192. doi: 10.1111/jfr3.12038.
  • MLIT. 2020. [dataset]. River Discharge dataset of the Japanese Ministry or Land, Infrastructure, Transport and Tourism. http://www1.river.go.jp/ [accessed 2022 November 20].
  • Mori N, Takemi T, Tachikawa Y, Tatano H, Shimura T, Tanaka T, Fujimi T, Osakada Y, Webb A, Nakakita E. 2021. Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia. Weather Clim Extremes. 32:100309. doi: 10.1016/j.wace.2021.100309.
  • Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models part I - a discussion of principles. J Hydrol. 10:282–290. doi: 10.1016/0022-1694(70)90255-6.
  • Nayak S, Takemi T. 2020. Clausius-Clapeyron scaling of extremely heavy precipitations: case studies of the July 2017 and July 2018 heavy rainfall events over Japan. J Meteorol Soc Jpn. 98(6):1147–1162. doi: 10.2151/jmsj.2020-058.
  • Nayak S, Takemi T. 2021. Atmospheric driving mechanisms of extreme precipitation events in July of 2017 and 2018 in western Japan. Dyn Atmos Oceans. 93:101186. doi: 10.1016/j.dynatmoce.2020.101186.
  • Oizumi T, Saito K, Duc L, Junshi I. 2019. High-resolution numerical weather simulation with a large domain for extreme heavy rainfall events. Conference Oral Presentation AAS01-02 at the Japan Geoscience Union Meeting Makuhari Messe, Chiba, Japan, 29 May 2019.
  • Olsson J, Pers BC, Bengtsson L, Pechlivanidis I, Berg P, Körnich H. 2017. Distance-dependent depth-duration analysis in high-resolution hydro-meteorological ensemble forecasting: a case study in Malmö City, Sweden. Environ Modell Softw. 93:381–397. doi: 10.1016/j.envsoft.2017.03.025.
  • Ono K, Kunii M, Honda Y. 2020. The regional model‐based Mesoscale Ensemble Prediction System, MEPS, at the Japan Meteorological Agency. J Roy Met Soc. 147(734):465–484 doi: 10.1002/qj.3928.
  • Osakada Y, Nakakita E. 2018. Future change of occurrence frequency of Baiu heavy rainfall and its linked atmospheric patterns by multiscale analysis. Sci Online Lett Atmos. 14(0):79–85. doi: 10.2151/sola.2018-014.
  • Patel P, Thakur P, K, Aggarwal S, P, Garg V, Dhote P, R, Nikam B, R, Swain S, Al-Ansari N. 2022. Revisiting 2013 Uttarakhand flash floods through hydrological evaluation of precipitation data sources and morphometric prioritization. Geomatics Nat Hazards Risk. 13(1):646–666. doi: 10.1080/19475705.2022.2038696.
  • Pappenberger F, Cloke HL, Parker DJ, Wetterhall F, Richardson DS, Thielen J. 2015. The monetary benefit of early flood warnings in Europe. Environ Sci Pol. 51:278–291. doi: 10.1016/j.envsci.2015.04.016.
  • Ranalkar MR, Chaudhari HS, Hazra A, Sawaisarje GK, Pokhrel S. 2016. Dynamical features of incessant heavy rainfall event of June 2013 over Uttarakhand, India. Nat Hazards. 80(3):1579–1601. doi: 10.1007/s11069-015-2040-z.
  • Roux H, Amengual A, Romero R, Bladé E, Sanz-Ramos M. 2020. Evaluation of two hydrometeorological ensemble strategies for flash-flood forecasting over a catchment of the eastern Pyrenees. Nat Hazards Earth Syst Sci. 20(2):425–450. doi: 10.5194/nhess-20-425-2020.
  • Sahani J, Kumar P, Debele S, Spyrou C, Loupis M, Aragão L, Porcù F, Shah MAR, Di Sabatino S. 2019. Hydro-meteorological risk assessment methods and management by nature-based solutions. Sci Total Environ. 696:133936. doi: 10.1016/j.scitotenv.2019.133936.
  • Sasaki T. 2014. [A study on the method for analysis of radioactive cesium amount of Abukuma basin by distributed runoff model] [master’s thesis of Kyoto]. Kyoto, Japan: University Graduate School of Engineering. Japanese.
  • Sayama T, McDonnell JJ. 2009. A new time-space accounting scheme to predict stream water residence time and hydrograph source components at the watershed scale. Water Resour Res. 45(7):W07401. doi: 10.1029/2008WR007549.
  • Sayama T, Takara K, Tachikawa Y. 2003. Reliability evaluation of rainfall-sediment-runoff-models. IAHS Publ. 279:131–141.
  • Sayama T, Yamada M, Sugawara Y, Yamazaki D. 2020. Ensemble flash flood predictions using a high-resolution nationwide distributed rainfall-runoff model: case study of the heavy rain event of July 2018 and Typhoon Hagibis in 2019. Prog Earth Planet Sci. 7:75. doi: 10.1186/s40645-020-00391-7.
  • Siddique R, Mejia A. 2017. Ensemble streamflow forecasting across the U.S. mid-Atlantic region with a distributed hydrological model forced by GEFS reforecasts. J Hydrometeorol. 18(7):1905–1928. doi: 10.1175/JHM-D-16-0243.1.
  • Silvestro F, Rossi L, Campo L, Parodi A, Fiori E, Rudari R, Ferraris L. 2019. Impact-based flash-flood forecasting system: sensitivity to high resolution numerical weather prediction systems and soil moisture. J Hydrol. 572:388–402. doi: 10.1016/j.jhydrol.2019.02.055.
  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X, Wang W, Powers JG. 2008. A description of the advanced research WRF version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. Tech Note. 1–96. doi: 10.5065/D68S4MVH.
  • Sorooshian S, Duan Q, Gupta VK. 1993. Calibration of rainfall‐runoff models: application of global optimization to the sacramento soil moisture accounting model. Water Resour Res. 29(4):1185–1194. doi: 10.1029/92WR02617.
  • Tachikawa Y, Nagatani G, Takara K. 2004. Development of stage-discharge relationship equation incorporating saturated-unsaturated flow mechanism. Proc Hydraul Eng. 48:7–12. doi: 10.2208/prohe.48.7.
  • Takemi T. 2018. Importance of terrain representation in simulating a stationary convective system for the July 2017 Northern Kyushu Heavy Rainfall case. SOLA. 14(0):153–158. doi: 10.2151/sola.2018-027.
  • Thielen J, Bartholmes J, Ramos M-H, de Roo A. 2009. The European flood alert system – part 1: concept and development. Hydrol Earth Syst Sci. 13(2):125–140. doi: 10.5194/hess-13-125-2009.
  • Tien Bui D, Hoang ND, Pham TD, Ngo PTT, Hoa PV, Minh NQ, Tran XT, Samui P. 2019. A new intelligence approach based on GIS-based multivariate adaptive regression splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. J Hydrol. 575:314–326. doi: 10.1016/j.jhydrol.2019.05.046.
  • Troselj J, Imai Y, Ninomiya J, Mori N. 2018. Coastal current downscaling emphasizing freshwater impact on Ibaraki coast. J Japan Soc Civ Eng Ser B2 (Coastal Eng). 74(2):I_1357–I_1362. doi: 10.2208/kaigan.74.I_1357.
  • Troselj J, Imai Y, Ninomiya J, Mori N. 2019. Seasonal variabilities of sea surface temperature and salinity on Ibaraki coast. J Japan Soc Civ Eng Ser B2 (Coastal Eng). 75(2):I_1213–I_1218. doi: 10.2208/kaigan.75.I_1213.
  • Trošelj J, Lee HS. 2021. Modelling typhoon-induced extreme river discharges: a case study of Typhoon Hagibis in Japan. J Hydrol Reg Stud. 34:100776. doi: 10.1016/j.ejrh.2021.100776.
  • Trošelj J, Lee HS, Hobohm L. 2023. Enhancing a real-time flash flood predictive accuracy approach for the development of early warning systems: hydrological ensemble hindcasts and parameterizations. Sustainability. 15(18):13897. doi: 10.3390/su151813897.
  • Trošelj J, Ninomiya J, Takewaka S, Mori N. 2021. Dynamical downscaling of coastal dynamics for two extreme storm surge events in Japan. Front Mar Sci. 7:566277. doi: 10.3389/fmars.2020.566277.
  • Troselj J, Sayama T, Varlamov SM, Sasaki T, Racault M-F, Takara K, Miyazawa Y, Kuroki R, Yamagata T, Yamashiki Y. 2017. Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean. J Hydrol. 555:956–970. doi: 10.1016/j.jhydrol.2017.10.042.
  • Tsuguti H, Seino N, Kawase H, Imada Y, Nakaegawa T, Takayabu I. 2019. Meteorological overview and mesoscale characteristics of the heavy rain event of July 2018 in Japan. Landslides. 16(2):363–371. doi: 10.1007/s10346-018-1098-6.
  • UNESCO, UN-Water. 2020. United Nations World Water Development Report 2020: water and climate change. Paris: UNESCO.
  • Wang L, Zhou Y, Lei X, Zhou Y, Bi H, Mao X. 2020. Predominant factors of disaster caused by tropical cyclones in South China coast and implications for early warning systems. Sci Total Environ. 726:138556. doi: 10.1016/j.scitotenv.2020.138556.
  • Wijayarathne DB, Coulibaly P. 2020. Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. J Hydrol Reg Stud. 27:100646 doi: 10.1016/j.ejrh.2019.10064.
  • Wu W, Emerton R, Duan Q, Wood AW, Wetterhall F, Robertson DE. 2020. Ensemble flood forecasting: current status and future opportunities. Wiley Interdiscip Rev Water. 7(3):e1432. doi: 10.1002/wat2.1432.
  • Yang T-H, Yang S-C, Ho J-Y, Lin G-F, Hwang G-D, Lee C-S. 2015. Flash flood warnings using the ensemble precipitation forecasting technique: a case study on forecasting floods in Taiwan caused by typhoons. J Hydrol. 520:367–378. doi: 10.1016/j.jhydrol.2014.11.028.
  • Zhai X, Zhang Y, Zhang Y, Guo L, Liu R. 2021. Simulating flash flood hydrographs and behavior metrics across China: implications for flash flood management. Sci Total Environ. 763:142977. doi: 10.1016/j.scitotenv.2020.142977.
  • Zhong M, Jiang T, Hong Y, Yang X., 2019. Performance of multi-level association rule mining for the relationship between causal factor patterns and flat flood magnitudes in a humid area. Geomatics Nat Hazards Risk. 10(1):1967–1987. doi: 10.1080/19475705.2019.1655102.