1,272
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An integrated quantitative and qualitative approach for landslide susceptibility mapping in West Sikkim district, Indian Himalaya

, , ORCID Icon, , &
Article: 2273781 | Received 09 Feb 2023, Accepted 17 Oct 2023, Published online: 01 Nov 2023

References

  • Aburas MM, Abdullah SH, Ramli MF, Ash’aari ZH. 2015. Measuring land cover change in Seremban, Malaysia using NDVI index. Proc Environ Sci. 30:238–243. https://cyberleninka.org/article/n/586987/viewer. doi: 10.1016/j.proenv.2015.10.043.
  • Acharyya SK. 1989. The Daling Group, its nomenclature, tectono-stratigraphy and structural grain: with notes on their possible equivalents. VisesaPrakasana-BharatiyaBhuvaijñanikaSarveksana. 22:5–13.
  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA. 2017. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci. 10(8):1–16. doi: 10.1007/s12517-017-2980-6.
  • AGS (Australian Geomechanics Society Sub-Committee on Landslide Risk Management). 2000. Landslide risk management concepts and guidelines. Australian Geomech J. 35:49–92. https://eagcg.org/common/pdf/LRM2000-Concepts.pdf.
  • Akbari A, Yahaya FBM, Azamirad M, Fanodi M. 2014. Landslide susceptibility mapping using logistic regression analysis and GIS tools. Electr J Geotech Engin. 19:1687–1696.
  • Althuwaynee OF, Pradhan B. 2017. Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City. Geomatics, Nat Hazards and Risk. 8(2):706–732. doi: 10.1080/19475705.2016.1255670.
  • Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S. 2015. Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenviron Disasters. 2(1):1–17. doi: 10.1186/s40677-014-0009-y.
  • Anusuya D. 2015. Quaternary geomorphological landforms on the Southeast facing slopes of Kanchenjunga around Dzongri in West Sikkim [PhD thesis]. Visva Bharti University. http://hdl.handle.net/10603/234251.
  • Arabameri A, Pradhan B, Rezaei K, Lee CW. 2019. “Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR–RF integrated model and multiresolution DEMs. Remote Sens. 11(9):999. doi: 10.3390/rs11090999.
  • Atlas Magazine. 2020. [accessed 2022 Dec 29]. https://www.atlas-mag.net/en/article/natural-disasters-risk-in-india.
  • Auden JB. 1935. Traverses in the Himalaya. Records of Geol Survey of India. 69:123–167.
  • Ayalew L, Yamagishi H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65(1–2):15–31. doi: 10.1016/j.geomorph.2004.06.010.
  • Ayalew L, Yamagishi H, Marui H, Kanno T. 2005. Landslides in Sado Island of Japan: part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engin Geol. 81(4):432–445. doi: 10.1016/j.enggeo.2005.08.004.
  • Banerjee P, Ghose MK, Pradhan R. 2018. Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya. Arab J Geosci. 11(7):1–18. doi: 10.1007/s12517-018-3488-4.
  • Banshtu RS, Versain LD, Pandey DD. 2020. Risk assessment using quantitative approach: Central Himalaya, Kullu, Himachal Pradesh, India. Arab J Geosci. 13(5):219. doi: 10.1007/s12517-020-5143-0.
  • Basu SK. 2013. “Geology of Sikkim State.” http://14.139.206.50:8080/jspui/bitstream/1/4375/1/Geology%20of%20Sikkim%20State.pdf.
  • Basu T, Pal S. 2018. Identification of landslide susceptibility zones in Gish River basin, West Bengal, India. Georisk: Assessment and Manage Risk for Engineered Syst Geohazards. 12(1):14–28. doi: 10.1080/17499518.2017.1343482.
  • Bell FG. 2013. Engineering properties of soils and rocks. Butterworth-Heinemann, Elsevier.
  • Bera A, Mukhopadhyay BP, Das D. 2019. Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Nat Hazards. 96(2):935–959. doi: 10.1007/s11069-019-03580-w.
  • Bhardwaj DR, Tahiry H, Sharma P, Pala NA, Kumar D, Kumar A, Bharti B. 2021. Influence of aspect and elevational gradient on vegetation pattern, tree characteristics and ecosystem carbon density in northwestern Himalayas. Land. 10(11):1109. doi: 10.3390/land10111109.
  • Biswakarma P, Joshi V, Kumar K. 2020. Study of Slope Failures in and around Yuksom, the First Capital of Sikkim, India- A case study. Environ & We an Int J Sci Technol. 15(1):39–48. http://www.sedindia.in/ewijst/issues/vol15/ewijst1501042019023.pdf.
  • Bose PN. 1891. Notes on the geology and mineral resources of Sikkim. Rec Geol Surv India. 24(4):217–230.
  • Brabb EE. 1984. Innovative approaches to landslide hazard and risk mapping. In Proceedings of the 4th International Symposium on Landslides.” Canadian Geotechnical Society, Ed.; Canadian Geotechnical Society: Toronto, ON, Canada, 1, p. 307–324.
  • Cao C, Wang Q, Chen J, Ruan Y, Zheng L, Song S, Niu C. 2016. Landslide susceptibility mapping in vertical distribution law of precipitation area: case of the Xulong Hydropower Station Reservoir, Southwestern China. Water. 8(7):270. doi: 10.3390/w8070270.
  • Carrara A, Guzzetti F, Cardinali M, Reichenbach P. 1999. Use of GIS technology in the prediction and monitoring of landslide hazard. Natural Hazards. 20(2/3):117–135. doi: 10.1023/A:1008097111310.
  • Castellanos AEA. 2008. Multi-scale landslide risk assessment in Cuba [PhD]. thesis number 154, University of Utrecht. ISBN 978-90-6164-268-8.
  • Chalkias C, Kalogirou S, Ferentinou M. 2014. Landslide susceptibility, Peloponnese Peninsula in South Greece. J Maps. 10(2):211–222. doi: 10.1080/17445647.2014.884022.
  • Chapin FS, Matson PA, Vitousek PM. 2011. The ecosystem concept. In: Principles of terrestrial ecosystem ecology. New York, NY: Springer; p. 3–22. doi: 10.1007/978-1-4419-9504-9_1.
  • Chen W, Li W, Hou E, Zhao Z, Deng N, Bai H, Wang D. 2014. Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. Arab J Geosci. 7(11):4499–4511. doi: 10.1007/s12517-014-1369-z.
  • Clerici A, Perego S, Tellini C, Vescovi P. 2010. Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy). Nat Hazards. 52(1):1–29. doi: 10.1007/s11069-009-9349-4.
  • Cruden DM. 1991. A simple definition of a landslide. Bull Int Assoc Engin Geol-Bulletin de l'Association Internationale de Géologie de l'Ingénieur. 43(1):27–29. doi: 10.1007/BF02590167.
  • Dai K, Deng J, Xu Q, Li Z, Shi X, Hancock C, Wen N, Zhang L, Zhuo G. 2022. Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements. GIScience& Remote Sens. 59(1):1226–1242. doi: 10.1080/15481603.2022.2100054.
  • Demir G, Aytekin M, Akgün A, İkizler SB, Tatar O. 2013. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards. 65(3):1481–1506. doi: 10.1007/s11069-012-0418-8.
  • Dikshit A, Sarkar R, Pradhan B, Segoni S, Alamri AM. 2020. Rainfall induced landslide studies in Indian Himalayan region: a critical review. Appl Sci. 10(7):2466. doi: 10.3390/app10072466.
  • Du G, Zhang Y, Iqbal J, Yang Z, Yao X. 2017. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. J Mt Sci. 14(2):249–268. doi: 10.1007/s11629-016-4126-9.
  • Du G, Zhang Y, Yang Z, Guo C, Yao X, Sun D. 2019. Landslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: a comparison between analytical hierarchy process information value and logistic regression-information value methods. Bull Eng Geol Environ. 78(6):4201–4215. doi: 10.1007/s10064-018-1393-4.
  • Fan B, Tao W, Qin G, Hopkins I, Zhang Y, Wang Q, Lin H, Guo L. 2020. Soil micro-climate variation in relation to slope aspect, position, and curvature in a forested catchment. Agricultural and Forest Meteorol. 290:107999. doi: 10.1016/j.agrformet.2020.107999.
  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engin Geol. 102(3–4):85–98. doi: 10.1016/j.enggeo.2008.03.022.
  • Fiorucci F, Ardizzone F, Mondini AC, Viero A, Guzzetti F. 2019. Visual interpretation of stereoscopic NDVI satellite images to map rainfall-induced landslides. Landslides. 16(1):165–174. doi: 10.1007/s10346-018-1069-y.
  • Foumelis M, Lekkas E, Parcharidis I. 2018. Landslide susceptibility mapping by GIS-based qualitative weighting procedure in Corinth area. Geosociety. 36(2):904. doi: 10.12681/bgsg.16840.
  • Froude MJ, Petley DN. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci. 18(8):2161–2181. doi: 10.5194/nhess-18-2161-2018.
  • Fu Y, Pan X, Xian T, Liu G, Zhong L, Liu Q, Li R, Wang Y, Ma M. 2018. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Clim Dyn. 51(5–6):1971–1989. doi: 10.1007/s00382-017-3992-3.
  • Gandhi GM, Parthiban B, Thummalu N, Christy A. 2015. Ndvi: vegetation change detection using remote sensing and GIS–A case study of Vellore District. Proc Computer Sci. 57:1199–1210. doi: 10.1016/j.procs.2015.07.415.
  • Ghosh S, van Westen CJ, Carranza EJM, Ghoshal TB, Sarkar NK, Surendranath M. 2009. A quantitative approach for improving the BIS (Indian) method of medium-scale landslide susceptibility. J Geol Soc India. 74(5):625–638. doi: 10.1007/s12594-009-0167-9.
  • Ghosh S. 2011. “Knowledge guided empirical prediction of landslide hazard.” Enschede, Netherlands: ITC. https://webapps.itc.utwente.nl/librarywww/papers_2011/phd/ghosh.pdf.
  • Gnyawali KR, Zhang Y, Wang G, Miao L, Pradhan AMS, Adhikari BR, Xiao L. 2020. Mapping the susceptibility of rainfall and earthquake triggered landslides along China–Nepal highways. Bull Eng Geol Environ. 79(2):587–601. doi: 10.1007/s10064-019-01583-2.
  • Government of Sikkim. 2022. [accessed 2022 December 29]. https://sikkim.gov.in/departments/forest-environment-and-wildlife-department/biodiversity.
  • GSI. 2014. Final report on study of lingtse granite gneiss in Sikkim Himalaya for elucidating the role of proterozoic granitoids in Himalayan orogeny. Geological Survey of India.
  • GSI. 2016. Final report on the specialised thematic mapping in the area between Dentam and Yuksom in parts of West and South Districts, Sikkim. Geological Survey of India.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology. 31(1–4):181–216. doi: 10.1016/S0169-555X(99)00078-1.
  • Hazra P, Krishna AP. 2019. Spatio-temporal and surface elevation change assessment of glaciers of Sikkim Himalaya (India) across different size classes using geospatial techniques. Environ Earth Sci. 78(14):1–20. doi: 10.1007/s12665-019-8390-1.
  • Hong H, Ilia I, Tsangaratos P, Chen W, Xu C. 2017. A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology. 290:1–16. doi: 10.1016/j.geomorph.2017.04.002.
  • Hosenuzzaman M, Kibria MG, Sarkar R, Abedin MA. 2022. Landslide, agricultural vulnerability, and community initiatives: a case study in South-East part of Bangladesh. In: Impact of climate change, land use and land cover, and socio-economic dynamics on landslides. Singapore: Springer; p. 123–145.
  • Hoyois P, Scheuren JM, Below R, Guha-Sapir D. 2007. Annual disaster statistical review: numbers and trends 2006. Centre for Research on the Epidemiology of Disasters (CRED) School of Public Health, Catholic University of Louvain Brussels, Belgium.
  • Hungr O, Fell R, Couture R, Eberhardt E. 2005. Landslide risk management. 1st ed. London: CRC Press. doi: 10.1201/9781439833711.
  • Jaiswal P, van Westen CJ, Jetten V. 2010. Quantitative landslide hazard assessment along a transportation corridor in southern India. Engin Geol. 116(3–4):236–250. doi: 10.1016/j.enggeo.2010.09.005.
  • Jaiswal P, van Westen CJ, Jetten V. 2011. Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides. 8(3):279–291. doi: 10.1007/s10346-011-0252-1.
  • Jaiswal P. 2011. Landslide risk quantification along transportation corridors based on historical information. Enschede, Netherlands: ITC.
  • Jesiya NP, Gopinath G. 2019. A Customized Fuzzy AHP-GIS based DRASTIC-L model for intrinsic groundwater vulnerability assessment of urban and peri urban phreatic aquifer clusters. Groundwater for Sustainable Devel. 8:654–666. doi: 10.1016/j.gsd.2019.03.005.
  • Kanungo DP, Sarkar S. 2003. Landslides and terrain parameters in Darjeeling Himalaya. Himalayan Geol. 24(2):55–62.
  • Kayastha P, Dhital MR, De Smedt F. 2013. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinauwatershed, West Nepal. Computers and Geosci. 52:398–408. doi: 10.1016/j.cageo.2012.11.003.
  • Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C. 2019. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. Egyptian J Remote Sens and Space Sci. 22(1):11–24. doi: 10.1016/j.ejrs.2018.03.004.
  • Kose DD, Turk T. 2019. GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods. Phys Geograph. 40(5):481–501. doi: 10.1080/02723646.2018.1559583.
  • Kouli M, Loupasakis C, Soupios P, Vallianatos F. 2010. Landslide hazard zonation in high-risk areas of Rethymno Prefecture, Crete Island, Greece. Nat Hazards. 52(3):599–621. doi: 10.1007/s11069-009-9403-2.
  • Lee J, Li X, Xu ZW, Dai CF. 2001. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol. 40(3):381–391. doi: 10.1007/s002540000163.
  • Lee S, Min K. 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol. 40(9):1095–1113. doi: 10.1007/s002540100310.
  • Lee S, Pradhan B. 2006. Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J Earth Syst Sci. 115(6):661–672. doi: 10.1007/s12040-006-0004-0.
  • Li Y, Chen G, Han Z, Zheng L, Zhang F. 2014. A hybrid automatic thresholding approach using panchromatic imagery for rapid mapping of landslides. GISci Remote Sens. 51(6):710–730. doi: 10.1080/15481603.2014.972867.
  • Luo X, Lin F, Zhu S, Yu M, Zhang Z, Meng L, Peng J. 2019. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. PLoS One. 14(4):e0215134. doi: 10.1371/journal.pone.0215134.
  • Magliulo P, Di Lisio A, Russo F, Zelano A. 2008. Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards. 47(3):411–435. doi: 10.1007/s11069-008-9230-x.
  • Mandal SP, Chakrabarty A, Maity P. 2018. Comparative evaluation of information value and frequency ratio in landslide susceptibility analysis along national highways of Sikkim Himalaya. Spat Inf Res. 26(2):127–141. doi: 10.1007/s41324-017-0160-0.
  • Martha TR, van Westen CJ, Kerle N, Jetten V, Kumar VK. 2013. Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology. 184:139–150. doi: 10.1016/j.geomorph.2012.12.001.
  • Martha TR. 2011. Detection of landslides by object-oriented image analysis. Enschede, Netherlands: ITC. https://webapps.itc.utwente.nl/librarywww/papers_2011/phd/martha.pdf.
  • Mirdda HA, Bera S, Siddiqui MA, Singh B. 2020. Analysis of bi-variate statistical and multi-criteria decision-making models in landslide susceptibility mapping in lower Mandakini Valley, India. GeoJournal. 85(3):681–701. doi: 10.1007/s10708-019-09991-3.
  • Mishra M, Sarkar T. 2020. A multistage hybrid model for landslide risk mapping: tested in and around Mussoorie in Uttarakhand state of India. Environ Earth Sci. 79(19):1–24. doi: 10.1007/s12665-020-09180-3.
  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C. 2006. Global landslide and avalanche hotspots. Landslides. 3(2):159–173. doi: 10.1007/s10346-006-0036-1.
  • Nakileza BR, Nedala S. 2020. Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenviron Disasters. 7(1):1–13. doi: 10.1186/s40677-020-00160-0.
  • Ni Z, Yang Z, Li W, Zhao Y, He Z. 2019. Decreasing trend of geohazards induced by the 2008 Wenchuan earthquake inferred from time series NDVI data. Remote Sens. 11(19):2192. doi: 10.3390/rs11192192.
  • Nor Diana MI, Muhamad N, Taha MR, Osman A, Alam MM. 2021. Social vulnerability assessment for landslide hazards in Malaysia: a systematic review study. Land. 10(3):315. doi: 10.3390/land10030315.
  • Panchal S, Sangwan S, Usman M. 2015. A review of techniques of landslide susceptibility mapping using GIS. Int J Engin Sci Res Technol. 4(2):142–145.
  • Panchal S, Shrivastava AK. 2021. A comparative study of frequency ratio, Shannon’s entropy and analytic hierarchy process (AHP) models for landslide susceptibility assessment. IJGI. 10(9):603. doi: 10.3390/ijgi10090603.
  • Park NW. 2011. Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environ Earth Sci. 62(2):367–376. doi: 10.1007/s12665-010-0531-5.
  • Pellicani R, van Westen CJ, Spilotro G. 2014. Assessing landslide exposure in areas with limited landslide information. Landslides. 11(3):463–480. doi: 10.1007/s10346-013-0386-4.
  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR. 2013. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci. 6(7):2351–2365. doi: 10.1007/s12517-012-0532-7.
  • Pradhan B, Youssef AM. 2010. Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci. 3(3):319–326. doi: 10.1007/s12517-009-0089-2.
  • Rai PK, Mohan K, Kumra VK. 2014. Landslide hazard and its mapping using remote sensing and GIS. J Sci Res. 58:1–13.
  • Ramakrishnan D, Singh TN, Verma AK, Gulati A, Tiwari KC. 2013. Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat Hazards. 65(1):315–330. doi: 10.1007/s11069-012-0365-4.
  • Ramesh V, Anbazhagan S. 2015. Landslide susceptibility mapping along Kolli hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models. Environ Earth Sci. 73(12):8009–8021. doi: 10.1007/s12665-014-3954-6.
  • Rawat MS. 2015. Geo-environmental studies in A part of East Sikkim with special reference to landslide. Dept. of Geology, HNB Garhwal University, India [PhD Thesis].
  • Ray KK. 1976. Some problems of stratigraphy and tectonics of the Darjeeling and Sikkim Himalayas. Geol Surv Ind Misc Pub. 24:279–394.
  • Regmi AD, Yoshida K, Pourghasemi HR, Dhital MR, Pradhan B. 2014. Landslide susceptibility mapping along Bhalubang—Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. J Mt Sci. 11(5):1266–1285. doi: 10.1007/s11629-013-2847-6.
  • Reid ME, Iverson RM. 1992. Gravity‐driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity. Water Resources Res. 28(3):939–950. doi: 10.1029/91WR02695.
  • Roy J, Saha S, Arabameri A, Blaschk T, Bui DT. 2019. A novel ensemble approach for Landslide Susceptibility Mapping (LSM) in Darjeeling and Kalimpong Districts, West Bengal, India. Remote Sens. 11(23):2886. doi: 10.3390/rs11232866.
  • Rozos D, Bathrellos GD, Skillodimou HD. 2011. Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, GREECE. Environ Earth Sci. 63(1):49–63. doi: 10.1007/s12665-010-0687-z.
  • Saaty RW. 1987. The analytic hierarchy process—what it is and how it is used. Mathematical Modelling. 9(3–5):161–176. doi: 10.1016/0270-0255(87)90473-8.
  • Saaty TL, Vargas LG. 2001. Models, methods, concepts and application of analytical hierarchy process. Boston: Kluwer; p. 333.
  • Saaty TL. 1980. The analytic hierarchy process. New York: McGrawHill.
  • Saaty TL. 1995. Transport planning with multiple criteria: the analytic hierarchy process applications and progress review. ATR. 29(1):81–126. doi: 10.1002/atr.5670290109.
  • Saaty TL. 2005. Theory and application of the analytic network process. Pittsburg: RWS.
  • Sarkar S, Roy AK, Martha TR. 2013. Landslide susceptibility assessment using information value method in parts of the Darjeeling Himalayas. J Geol Soc India. 82(4):351–362. doi: 10.1007/s12594-013-0162-z.
  • Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS. 2009. Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol. 59(4):432–438. doi: 10.1007/s00284-009-9456-1.
  • Sharma A, Gupta M, Sharma N. 2023. Glacier facies characterisation in transboundary West Sikkim Himalaya from TerraSAR-X; GLCM based classification approach. J Spatial Sci. 1–17. doi: 10.1080/14498596.2022.2164085.
  • Sharma S, Mahajan AK. 2018. Comparative evaluation of GIS-based landslide susceptibility mapping using statistical and heuristic approach for Dharamshala region of Kangra Valley, India. Geoenviron Disasters. 5(1):4. doi: 10.1186/s40677-018-0097-1.
  • Sharma S, Mahajan AK. 2018. A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India. Bull Eng Geol Environ. 78(4):2431–2448. doi: 10.1007/s10064-018-1259-9.
  • Shooshpasha I, Shirvani RA. 2015. Effect of cement stabilization on geotechnical properties of sandy soils. Geomech Eng. 8(1):17–31. doi: 10.12989/gae.2015.8.1.017.
  • Singh A, Pal S, Kanungo DP, Pareek N. 2017. An overview of recent developments in landslide vulnerability assessment- presentation of a new conceptual framework. In: Mikoš M, Arbanas Ž, Yin Y, Sassa K, editors. Advancing culture of living with landslides. Advances in landslide science. New York: Springer; vol. 2; p. 795–802. doi: 10.1007/978-3-319-53498-5_91.
  • Singh A, Pal S, Kanungo DP. 2021. An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India. Environ Dev Sustain. 23(4):5058–5095. doi: 10.1007/s10668-020-00804-z.
  • Singh K, Kumar V. 2017. Landslide hazard mapping along national highway-154A in Himachal Pradesh, India using information value and frequency ratio. Arab J Geosci. 10(24):1–18. doi: 10.1007/s12517-017-3315-3.
  • Singh K, Kumar V. 2018. Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. J Mt Sci. 15(4):808–824. doi: 10.1007/s11629-017-4634-2.
  • Singh R, Umrao RK, Singh TN. 2014. Stability evaluation of road-cut slopes in the Lesser Himalaya of Uttarakhand, India: conventional and numerical approaches. Bull Eng Geol Environ. 73(3):845–857. doi: 10.1007/s10064-013-0532-1.
  • SSDMA. 2022. [accessed 2022 Apr 25]. http://www.ssdma.nic.in/Uploads/PdfFiles/multi_hazard_risk_and_vulnerability_assessment_of_sikkim.pdf.
  • Sui H, Hu R, Gao W, Gao W, Luo G. 2020. Risk assessment of individual landslide based on the risk acceptable model: a case study of the Shiyantan landslide in Mayang County, China. Human and Ecol Risk Assessment: An Int J. 26(9):2500–2519. doi: 10.1080/10807039.2019.1710461.
  • Tsangaratos P, Ilia I, Hong H, Chen W, Xu C. 2017. Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides. 14(3):1091–1111. doi: 10.1007/s10346-016-0769-4.
  • Van Westen CJ, Van Asch TW, Soeters R. 2006. Landslide hazard and risk zonation—Why is it still so difficult? Bull Eng Geol Environ. 65(2):167–184. doi: 10.1007/s10064-005-0023-0.
  • Varnes DJ. 1984. “Landslide hazard zonation: a review of principles and practice” (No. 3). Natural Hazards, Publisher: United Nations
  • Vranken L, Vantilt G, Van Den Eeckhaut M, Vandekerckhove L, Poesen J. 2015. Landslide risk assessment in a densely populated hilly area. Landslides. 12(4):787–798. doi: 10.1007/s10346-014-0506-9.
  • Wang WN, Chigira M, Furuya T. 2003. Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan. Engineering Geol. 69(1–2):1–13. doi: 10.1016/S0013-7952(02)00244-2.
  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena. 85(3):274–287. doi: 10.1016/j.catena.2011.01.014.
  • Yalcin A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena. 72(1):1–12. doi: 10.1016/j.catena.2007.01.003.
  • Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci. 61(4):821–836. doi: 10.1007/s12665-009-0394-9.
  • Zhong C, Liu Y, Gao P, Chen W, Li H, Hou Y, Nuremanguli T, Ma H. 2020. Landslide mapping with remote sensing: Challenges and opportunities. Int J Remote Sens. 41(4):1555–1581. doi: 10.1080/01431161.2019.1672904.
  • Zillman J. 1999. The physical impact of disaster. In: Natural Disaster Manage. Leicester: Tudor Rose Holdings Ltd. Leicestr; 320.