631
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extraction of landslide morphology based on Topographic Profile along the Direction of Slope Movement using UAV images

, , , &
Article: 2278276 | Received 31 Jul 2023, Accepted 27 Oct 2023, Published online: 07 Nov 2023

References

  • Akcay HG, Aksoy S. 2008. Automatic detection of geospatial objects using multiple hierarchical segmentations. IEEE Trans Geosci Remote Sens. 46(7):2097–2111. doi: 10.1109/TGRS.2008.916644.
  • Aksoy B, Ercanoglu M. 2012. Landslide identification and classification by object-based image analysis and fuzzy logic: an example from the Azdavay region (Kastamonu, Turkey). Comput Geosci. 38(1):87–98. doi: 10.1016/j.cageo.2011.05.010.
  • Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens. 65(1):2–16. doi: 10.1016/j.isprsjprs.2009.06.004.
  • Blaschke T, Hay GJ, Kelly M, Lang S, Hofmann P, Addink E, Queiroz Feitosa R, van der Meer F, van der Werff H, van Coillie F, et al. 2014. Geographic object-based image analysis – Towards a new paradigm. ISPRS J Photogramm Remote Sens. 87(100):180–191. doi: 10.1016/j.isprsjprs.2013.09.014.
  • Bui DT, Shahabi H, Shirzadi A, Chapi K, Alizadeh M, Chen W, Mohammadi A, Ahmad B, Panahi M, Hong H, et al. 2018. Landslide detection and susceptibility mapping by AIRSAR Data using support vector machine and index of entropy models in Cameron Highlands, Malaysia. Remote Sensing. 10(10):1527. doi: 10.3390/rs10101527.
  • Chen T, Trinder J, Niu R. 2017. Object-oriented landslide mapping using ZY-3 satellite imagery, random forest and mathematical morphology, for the Three-Gorges Reservoir, China. Remote Sens. 9(4):333. doi: 10.3390/rs9040333.
  • Chong XU, Fu-Chu DAI, Jian C, Xin-bin TU, Ling XU, Wei-Chao LI, Wei T, Yan-Bo CAO, Xin YAO. 2009. Identification and analysis of secondary geological hazards triggered by a magnitude 8.0 Wenchuan Earthquake. J Remote Sens. 13:745–762.
  • Drăguţ L, Eisank C. 2011. Object representations at multiple scales from digital elevation models. Geomorphology (Amst). 129(3-4):183–189. doi: 10.1016/j.geomorph.2011.03.003.
  • Drǎguţ L, Tiede D, Levick SR. 2010. ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geograph Inform Sci. 24(6):859–871. doi: 10.1080/13658810903174803.
  • Feizizadeh B, Blaschke T, Tiede D, Moghaddam MHR. 2017. Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes. Geomorphology. 293:240–254. doi: 10.1016/j.geomorph.2017.06.002.
  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T. 2012. Landslide inventory maps: new tools for an old problem. Earth Sci Rev. 112(1–2):42–66. doi: 10.1016/j.earscirev.2012.02.001.
  • Hergarten S, Robl J, Stüwe K. 2014. Extracting topographic swath profiles across curved geomorphic features. Earth Surf Dynam. 2(1):97–104. doi: 10.5194/esurf-2-97-2014.
  • Highland L, Bobrowsky PT. 2008. The landslide handbook: a guide to understanding landslides. Reston, VA: US Geological Survey.
  • Huang Y, Xu C, Zhang X, Xue C, Wang S. 2021. An updated database and spatial distribution of landslides triggered by the Milin, Tibet Mw6.4 earthquake of 18 November 2017. J Earth Sci. 32(5):1069–1078. doi: 10.1007/s12583-021-1433-z.
  • Karantanellis E, Marinos V, Vassilakis E, Christaras B. 2020. Object-based analysis using unmanned aerial vehicles (UAVs) for site-specific landslide assessment. Remote Sens. 12(11):1711. doi: 10.3390/rs12111711.
  • Kurtz C, Stumpf A, Malet J-P, Gançarski P, Puissant A, Passat N. 2014. Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS J Photogramm Remote Sens. 87:122–136. doi: 10.1016/j.isprsjprs.2013.11.003.
  • Lahousse T, Chang KT, Lin YH. 2011. Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed, Taiwan. Nat Hazards Earth Syst Sci. 11(10):2715–2726. doi: 10.5194/nhess-11-2715-2011.
  • Li Z, Shi W, Lu P, Yan L, Wang Q, Miao Z. 2016. Landslide mapping from aerial photographs using change detection-based Markov random field. Remote Sens Environ. 187:76–90. doi: 10.1016/j.rse.2016.10.008.
  • Liu C, Frazier P, Kumar L. 2007. Comparative assessment of the measures of thematic classification accuracy. Remote Sens Environ. 107(4):606–616. doi: 10.1016/j.rse.2006.10.010.
  • Martha TR, Kerle N, van Westen CJ, Jetten V, Kumar KV. 2011. Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Trans Geosci Remote Sens. 49(12):4928–4943. doi: 10.1109/TGRS.2011.2151866.
  • Nichol J, Wong MS. 2005. Satellite remote sensing for detailed landslide inventories using change detection and image fusion. Int J Remote Sens. 26(9):1913–1926. doi: 10.1080/01431160512331314047.
  • Pawluszek K. 2019. Landslide features identification and morphology investigation using high-resolution DEM derivatives. Nat Hazards. 96(1):311–330. doi: 10.1007/s11069-018-3543-1.
  • Pellicani R, Argentiero I, Manzari P, Spilotro G, Marzo C, Ermini R, Apollonio C. 2019. UAV and airborne LiDAR Data for interpreting kinematic evolution of landslide movements: the Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences. 9(6):248. doi: 10.3390/geosciences9060248.
  • Qi JH, Chen H, Chen FP. 2022. Extraction of landslide features in UAV remote sensing images based on machine vision and image enhancement technology. Neural Comput Appl. 34(15):12283–12297. doi: 10.1007/s00521-021-06523-4.
  • Sameen MI, Pradhan B. 2019. Landslide detection using residual networks and the fusion of spectral and topographic information. IEEE Access. 7:114363–114373. doi: 10.1109/ACCESS.2019.2935761.
  • Scaioni M, Longoni L, Melillo V, Papini M. 2014. Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens. 6(10):9600–9652. doi: 10.3390/rs6109600.
  • Shi W, Deng S, Xu W. 2018. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM. Geomorphology. 303:229–242. doi: 10.1016/j.geomorph.2017.12.005.
  • Singh A, Chougule A, Narang P, Chamola V, Yu FR. 2022. Low-light image enhancement for UAVs with multi-feature fusion deep neural networks. IEEE Geosci Remote Sens Lett. 19:1–5. doi: 10.1109/LGRS.2022.3181106.
  • Tang Y, Zhang Z, Wang C, Zhang H, Wu F, Liu M. 2015. Characterization of the giant landslide at Wenjiagou by the insar technique using TSX-TDX CoSSC data. Landslides. 12(5):1015–1021. doi: 10.1007/s10346-015-0616-z.
  • Tarolli P, Sofia G, Dalla Fontana G. 2012. Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Nat Hazards. 61(1):65–83. doi: 10.1007/s11069-010-9695-2.
  • Telbisz T, Kovacs G, Szekely B, Szabo J. 2013. Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool. zfg. 57(4):485–513. doi: 10.1127/0372-8854/2013/0110.
  • Van Den Eeckhaut M, Kerle N, Poesen J, Hervás J. 2012. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology. 173–174:30–42. doi: 10.1016/j.geomorph.2012.05.024.
  • Viet-Ha N, Mohammadi A, Shahabi H, Ahmad BB, Al-Ansari N, Shirzadi A, Geertsema M, R. Kress V, Karimzadeh S, Valizadeh Kamran K, et al. 2020. Landslide detection and susceptibility modeling on Cameron Highlands (Malaysia): a comparison between random forest, logistic regression and logistic model tree algorithms. Forests. 11(8):830. doi: 10.3390/f11080830.
  • Wang X, Wang M, Wang S, Wu Y. 2015. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans Chin Soc Agric Eng. 31:152–159.
  • Wang J, Wei Y, Mei A, Guan J, Ding X, Wang S. 2021. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application. Geology China. 48:388–401.
  • Wang S, Yang B, Zhou Y, Wang F, Zhang R, Zhao Q. 2018. Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring. Geomorphology. 309:77–85. doi: 10.1016/j.geomorph.2018.02.027.