408
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spatial-temporal characteristics and influencing factors of wildfire occurrence and correlation with WUI presence in Beijing-Tianjin-Hebei region, China

, , &
Article: 2281246 | Received 31 May 2023, Accepted 05 Nov 2023, Published online: 21 Nov 2023

References

  • Ager AA, Palaiologou P, Evers CR, Day MA, Ringo C, Short K. 2019. Wildfire exposure to the wildland urban interface in the western US. Appl Geogr. 111:102059. doi: 10.1016/j.apgeog.2019.102059.
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg E, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 259(4):660–684. doi: 10.1016/j.foreco.2009.09.001.
  • Arganaraz JP, Radeloff VC, Bar-Massada A, Gavier-Pizarro GI, Scavuzzo CM, Bellis LM. 2017. Assessing wildfire exposure in the Wildland-Urban Interface area of the mountains of central Argentina. J Environ Manage. 196:499–510. doi: 10.1016/j.jenvman.2017.03.058.
  • Ba R. 2020. Wildfire smoke detection and fire-affected vegetation assessment based on MODIS data [dissertation]. Hefei (Anhui): University of Science and Technology of China. Available from Cnki.
  • Bar-Massada A, Stewart SI, Hammer RB, Mockrin MH, Radeloff VC. 2013. Using structure locations as a basis for mapping the wildland urban interface. J Environ Manage. 128:540–547. doi: 10.1016/j.jenvman.2013.06.021.
  • Baranovskiy NV, Sherstnyov VS, Yankovich EP, Engel MV, Belov VV. 2016. Focused sunlight factor of forest fire danger assessment using WebGIS and RS technologies. Paper presented at the 4th International Conference on Remote Sensing and Geoinformation of the Environment (RSCy), Paphos, Cyprus, Apr 04–08.
  • Campos-Ruiz R, Parisien MA, Flannigan MD. 2018. Temporal patterns of wildfire activity in areas of contrasting human influence in the Canadian Boreal Forest. Forests. 9(4):159. doi: 10.3390/f9040159.
  • Cao F, Ge Y, Wang JF. 2013. Optimal discretization for geographical detectors-based risk assessment. Gisci Remote Sens. 50(1):78–92. doi: 10.1080/15481603.2013.778562.
  • Chas-Amil M-L, Nogueira-Moure E, Prestemon JP, Touza J. 2022. Spatial patterns of social vulnerability in relation to wildfire risk and wildland-urban interface presence. Landscape Urban Plann. 228(0169-2046):104577. doi: 10.1016/j.landurbplan.2022.104577.
  • Corcoran J, Higgs G, Brunsdon C, Ware A, Norman P. 2007. The use of spatial analytical techniques to explore patterns of fire incidence: a South Wales case study. Comput Environ Urban Syst. 31(6):623–647. doi: 10.1016/j.compenvurbsys.2007.01.002.
  • Du L, Song N, Liu K, Hou J, Hu Y, Zhu Y, Wang X, Wang L, Guo Y. 2017. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for drought monitoring in semi-arid regions of China. Remote Sens. 9(2):177. doi: 10.3390/rs9020177.
  • Filkov AI, Ngo T, Matthews S, Telfer S, Penman TD. 2020. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J Saf Sci Resilience. 1(1):44–56. doi: 10.1016/j.jnlssr.2020.06.009.
  • Fox DM, Carrega P, Ren Y, Caillouet P, Bouillon C, Robert S. 2018. How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990-2013). Sci Total Environ. 621:120–129. doi: 10.1016/j.scitotenv.2017.11.174.
  • Fu J, Wu Z, Yan S, Zhang Y, Gu X, Du L. 2020. Effects of climate, vegetation, and topography on spatial patterns of burn severity in the Great Xing’an Mountains. Acta Ecologica Sinica. 40(05):1672–1682. doi: 10.5846/stxb201902140264.
  • Gonzalez-Mathiesen C, Ruane S, March A. 2021. Integrating wildfire risk management and spatial planning - a historical review of two Australian planning systems. Int J Disaster Risk Reduct. 53:101984. doi: 10.1016/j.ijdrr.2020.101984.
  • Guo F, Su Z, Ma X, Song Y, Sun L, Hu H, Yang T. 2015. Climatic and non-climatic factors driving lightning-induced fire in Tahe, Daxing’an mountain. Acta Ecologica Sinica. 35(19):6439–6448. doi: 10.5846/stxb201402140257.
  • Han J. 2009. Interpretation of the old and new regulations on forest fire prevention. Legal Syst Soc. 12:331–332. doi: 10.19387/j.cnki.1009-0592.2009.12.229.
  • Hou X. 2018. The modeling analysis of the fire risk in the Wildland-urban interface at the provincial scale [master’s thesis]. Hefei(Anhui): University of Science and Technology of China. Available from Cnki.
  • Hou X, Ming J, Qin R, Zhu Q. 2019. Analysis of the fire risk in wildland-urban interface with random forest model. Scientia Silvae Sinicae. 55(08):194–200. doi: 10.11707/j.1001-7488.20190821.
  • Huang Y, Feng G, Dong W. 2011. Temporal changes in the patterns of extreme air temperature and precipitation in the various regions of China in recent 50 years. Acta Meteorologica Sinica. 69(01):125–136.
  • Jaafari A, Gholami DM, Zenner EK. 2017. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol Inform. 39:32–44. doi: 10.1016/j.ecoinf.2017.03.003.
  • Jennings CR. 2013. Social and economic characteristics as determinants of residential fire risk in urban neighborhoods: a review of the literature. Fire Saf J. 62:13–19. doi: 10.1016/j.firesaf.2013.07.002.
  • Jiang Q, Zhong S, Zhu W. 2020. Research on comprehensive risk assessment of forest fire in Beijing-Tianjin-Hebei region. China Saf Sci J. 30(10):119–125. doi: 10.16265/j.cnki.issn1003-3033.2020.10.017.
  • Kim SJ, Lim C-H, Kim GS, Lee J, Geiger T, Rahmati O, Son Y, Lee W-K. 2019. Multi-temporal analysis of forest fire probability using socio-economic and environmental variables. Remote Sensing. 11(1):86. doi: 10.3390/rs11010086.
  • Lampin-Maillet C, Jappiot M, Long M, Bouillon C, Morge D, Ferrier JP. 2010. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J Environ Manage. 91(3):732–741. doi: 10.1016/j.jenvman.2009.10.001.
  • Lee SI. 2001. Spatial association measures for an ESDA-GIS framework: developments, significance tests, and applications to spatio-temporal income dynamics of United States labor market areas, 1969–1999. Ohio: The Ohio State University.
  • Li S, Banerjee T. 2021. Spatial and temporal pattern of wildfires in California from 2000 to 2019. Sci Rep. 11(1):8779. doi: 10.1038/s41598-021-88131-9.
  • Li S, Dao V, Kumar M, Nguyen P, Banerjee T. 2022. Mapping the wildland-urban interface in California using remote sensing data. Sci Rep. 12(1):5789. doi: 10.1038/s41598-022-09707-7.
  • Li S, Wu Z, Liang Y, He H. 2017. A Review of Fire Controlling Factors and Their Dynamics in Boreal Forests. World Forestry Research. 30(02):41–45. doi: 10.13348/j.cnki.sjlyyj.2017.0019.y.
  • Li X, Li X, Wang Z, Zeng W, He W. 2008. Analysis of fire source characteristics of guangdong forest fires. J Central South Univ For Technol. 01:89–92. doi: 10.14067/j.cnki.1673-923x.2008.01.030.
  • Ma L. 2011. Research on moisture prediction of forest-floor fuel [master’s thesis]. Beijing: Beijing Forestry University. Available from Cnki.
  • Maingi JK, Henry MC. 2007. Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int J Wildland Fire. 16(1):23–33. doi: 10.1071/WF06007.
  • Mann ML, Batllori E, Moritz MA, Waller EK, Berck P, Flint AL, Flint LE, Dolfi E. 2016. Incorporating anthropogenic influences into fire probability models: effects of human activity and climate change on fire activity in California. PLoS One. 11(4):e0153589. doi: 10.1371/journal.pone.0153589.
  • Manzello SL, Almand K, Guillaume E, Vallerent S, Hameury S, Hakkarainen T. 2018. The growing global wildland urban interface (WUI) fire Dilemma: priority needs for research. Fire Saf J. 100:64–66. doi: 10.1016/j.firesaf.2018.07.003.
  • Martin DA. 2019. Linking fire and the United Nations sustainable development goals. Sci Total Environ. 662:547–558. doi: 10.1016/j.scitotenv.2018.12.393.
  • Masinda MM, Li F, Liu Q, Sun L, Hu T. 2021. Prediction model of moisture content of dead fine fuel in forest plantations on Maoer Mountain, Northeast China. J for Res. 32(5):2023–2035. doi: 10.1007/s11676-020-01280-x.
  • Matthews S. 2014. Dead fuel moisture research: 1991-2012. Int J Wildland Fire. 23(1):78–92. doi: 10.1071/WF13005.
  • Miranda A, Carrasco J, González M, Pais C, Lara A, Altamirano A, Weintraub A, Syphard AD. 2020. Evidence-based mapping of the wildland-urban interface to better identify human communities threatened by wildfires. Environ Res Lett. 15(9):094069. doi: 10.1088/1748-9326/ab9be5.
  • Nguyen NT, Dang BTN, Pham XC, Nguyen HT, Bui HT, Hoang ND, Bui DT. 2018. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: a comparative study. Ecol Inf. 46:74–85. doi: 10.1016/j.ecoinf.2018.05.009.
  • O’Connor CD, Calkin DE, Thompson MP. 2017. An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. Int J Wildland Fire. 26(7):587. doi: 10.1071/WF16135.
  • Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC. 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For Ecol Manage. 275:117–129. doi: 10.1016/j.foreco.2012.03.003.
  • Parente J, Pereira MG, Amraoui M, Tedim F. 2018. Negligent and intentional fires in Portugal: spatial distribution characterization. Sci Total Environ. 624:424–437. doi: 10.1016/j.scitotenv.2017.12.013.
  • Patel NR, Anapashsha R, Kumar S, Saha SK, Dadhwal VK. 2009. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. Int J Remote Sens. 30(1):23–39. doi: 10.1080/01431160802108497.
  • Peng S. 2019. 1-Km monthly mean temperature dataset for china (1901-2021). National Tibetan Plateau/Third Pole Environment Data Center. doi: 10.11888/Meteoro.tpdc.270961.Available from https://cstr.cn/18406.11.Meteoro.tpdc.270961.
  • Peng S. 2020. 1-Km monthly precipitation dataset for China (1901-2021). National Tibetan Plateau/Third Pole Environment Data Center. doi: 10.5281/zenodo.3185722.
  • Pourtaghi ZS, Pourghasemi HR, Aretano R, Semeraro T. 2016. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol Indic. 64:72–84. doi: 10.1016/j.ecolind.2015.12.030.
  • Qiao Z, Fang L, Zhang Y, Yang J, Jiang T, Yuan H. 2020. Spatio-temporal characteristics of forest fires in China between 2001 and 2017. Ying Yong Sheng Tai Xue Bao. 31(1):55–64. doi: 10.13287/j.1001-9332.202001.015.
  • Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF. 2005. The wildland–urban interface in the United States. Ecol Appl. 15(3):799–805. doi: 10.1890/04-1413.
  • Roos CI, Swetnam TW, Ferguson TJ, Liebmann MJ, Loehman RA, Welch JR, Margolis EQ, Guiterman CH, Hockaday WC, Aiuvalasit MJ, et al. 2021. Native American fire management at an ancient wildland-urban interface in the Southwest United States. Proc Natl Acad Sci. 118(4):e2018733118. doi: 10.1073/pnas.2018733118.
  • Salame CW, Queiroz JCB, Rocha GDM, Amin MM. 2012. Mapping the risk of burning in the Brazilian Amazon with the use of logistic regression and fuzzy inference. Math Geosci. 44(3):241–256. doi: 10.1007/s11004-012-9386-5.
  • Sandholt I, Rasmussen K, Andersen J. 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ. 79(2-3):213–224. doi: 10.1016/s0034-4257(01)00274-7.
  • Schug F, Bar-Massada A, Carlson AR, Cox H, Hawbaker TJ, Helmers D, Hostert P, Kaim D, Kasraee NK, Martinuzzi S, et al. 2023. The global wildland–urban interface. Nature. 621(7977):94–99. doi: 10.1038/s41586-023-06320-0.
  • Song J. 2012. The empirical study on the relation between forest fire and soil moisture based on MODIS data: a case study in the Greater Khingan mountains. Ecol Environ. 10:158–160 + 195.
  • Stein SM. 2013. Wildfire, wildlands, and people: understanding and preparing for wildfire in the wildland-urban interface: a forests on the edge report. US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
  • Tian X, Shu L, Zhao F, Wang M. 2015. Dynamic characteristics of forest fires in the main ecological geographic districts of China. Scientia Silvae Sinicae. 51(09):71–77. doi: 10.11707/j.1001-7488.20150910.
  • Tian Y, Jiang G, Zhou D, Li G. 2021. Systematically addressing the heterogeneity in the response of ecosystem services to agricultural modernization, industrialization and urbanization in the Qinghai-Tibetan Plateau from 2000 to 2018. J Cleaner Prod. 285:125323. doi: 10.1016/j.jclepro.2020.125323.
  • Walter E. 2008. Cambridge advanced learner’s dictionary with CD-ROM. Cambridge: Cambridge University Press.
  • Wang J, Xu C. 2017. Geodetector: principle and prospective. Acta Geographica Sinica. 72(1):116–134.
  • Wang J, Zhang T, Fu B. 2016. A measure of spatial stratified heterogeneity. Ecol Indic. 67:250–256. doi: 10.1016/j.ecolind.2016.02.052.
  • Wang M. 2009. Characteristics of forest fire response and trend under the scenarios of climate change in China [dissertation]. Beijing: Chinese Academy of Forestry. Available from Cnki.
  • Wang S, Zhang G, Tan S, Wang P, Wu X. 2020. Assessment of forest fire risk in Hunan province based on spatial logistic model. J Central South Univ For Technol. 40(09):88–95. doi: 10.14067/j.cnki.1673-923x.2020.09.010.
  • Wang W, Fan J, Li J. 2016. Assessment and zoning of fire risk in Shanxi Province based on spatial Logistic model. Pratacult Sci. 33(04):635–644. doi: 10.111829/j.issn.1001-0629.2015-0323.
  • Wang Y, Wang H, He Y. 2022. Analysis on temporal and spatial distribution and influencing factors of forest fire in China from 2010 to 2020. Shandong For Sci Technol. 52(05):26–32 + 38.
  • Wei S, Luo S, Luo B, Li X, Wang Z, Wu Z, Zhong Y, Li Q. 2020. Occurrence regularity of forest fire under the background of climate change. For Environ Sci. 36(02):133–143.
  • Wu L. 2019. Data set of 1 km resolution DEM in China. National Cryosphere Desert Data Center. Available from http://www.ncdc.ac.cn/portal/metadata/ba0e4b6b-8fef-4eec-9c84-81646f266282.
  • Xie L, Zhang R, Zhan J, Li S, Shama A, Zhan R, Wang T, Lv J, Bao X, Wu R. 2022. Wildfire risk assessment in Liangshan prefecture, China based on an integration machine learning algorithm. Remote Sens. 14(18):4592. doi: 10.3390/rs1418:4592.
  • Xu X. 2017a. Grid data set of 1KM China GDP spatial distribution. Resource and environmental science data registration and publication system. Available from http://www.resdc.cn/DOI. 2017. doi: 10.12078/2017121102.
  • Xu X. 2017b. Grid data set of 1KM Chinese population spatial distribution. Resource and environmental science data registration and publication system. Available from http://www.resdc.cn/DOI. doi: 10.12078/2017121101.
  • Xu X. 2018. NDVI annual 1KM data set in China. Resources and environment science data registration and publication system. Available from http://www.resdc.cn/DOI. doi: 10.12078/2018060601.
  • Xu X. 2022. LST annual 1KM data set in China. Resource and environmental science data registration and publication system. Available from http://www.resdc.cn/DOI. doi: 10.12078/2022090501.
  • Zeng A, Yang S, Zhu H, Mulualem T, Su Z, Wang G, Guo F. 2022. Spatiotemporal dynamics and climate influence of forest fires in Fujian Province, China. Forests. 13(3):423. doi: 10.3390/f13030423.
  • Zhai J, Li Y, Zhang B, Zhang A, Yan C, Ai J, … Yin J. 2022. Analysis of forest fires and lightning fires in representative fire-prone countries over the world. J Subtrop Resour Environ. 17(04):72–79. doi: 10.19687/j.cnki.1673-7105.2022.04.010.
  • Zhang H, Qi P, Guo G. 2014. Improvement of fire danger modelling with geographically weighted logistic model. Int J Wildland Fire. 23(8):1130–1146. doi: 10.1071/WF13195.
  • Zhang T, Sun Y, Guan M, Kang J, Zhang B. 2022. Human activity intensity in China under multi-factor interactions: spatiotemporal characteristics and influencing factors. Sustainability. 14(5):3113. doi: 10.3390/su14053113.
  • Zhao J, Zhang X, Liao C, Bao H. 2011. TVDI based soil moisture retrieval from remotely sensed data over arid areas. Remote Sens Technol Appl. 26(06):742–750.
  • Zhao L, Yebra M, van Dijk A, Cary GJ, Hughes D. 2022. Controlled field experiment clarifies the influence of soil moisture on litter moisture content. Agric Meteorol. 314:108782. doi: 10.1016/j.agrformet.2021.108782.
  • Zong X, Tian X. 2022. Bibliometric analysis of fires on wildland-urban interfaces. Nat Hazards Res. 2(3):147–153. doi: 10.1016/j.nhres.2022.08.003.