800
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating kinematics and triggers of slow-moving reservoir landslide using an improved MT-InSAR method

ORCID Icon, ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Article: 2289835 | Received 17 Jul 2023, Accepted 27 Nov 2023, Published online: 07 Dec 2023

References

  • Bateson L, Cigna F, Boon D, Sowter A. 2015. The application of the intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. Int J Appl Earth Obs Geoinf. 34:249–257. doi:10.1016/j.jag.2014.08.018.
  • Bayer B, Simoni A, Schmidt D, Bertello L. 2017. Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Eng Geol. 226:20–32. doi:10.1016/j.enggeo.2017.03.026.
  • Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sensing. 40(11):2375–2383. doi:10.1109/TGRS.2002.803792.
  • Cohen-Waeber J, Bürgmann R, Chaussard E, Giannico C, Ferretti A. 2018. Spatiotemporal patterns of precipitation-modulated landslide deformation from independent component analysis of InSAR time series. Geophys Res Lett. 45(4):1878–1887. doi:10.1002/2017GL075950.
  • Colesanti C, Wasowski J. 2006. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng Geol. 88(3–4):173–199. doi:10.1016/j.enggeo.2006.09.013.
  • Comon P. 1994. Independent component analysis, a new concept? Signal Process. 36(3):287–314. doi:10.1016/0165-1684(94)90029-9.
  • Ebmeier S. 2016. Application of independent component analysis to multitemporal InSAR data with volcanic case studies. JGR Solid Earth. 121(12):8970–8986. doi:10.1002/2016JB013765.
  • Ferrari A, Ledesma A, González DA, Corominas J. 2011. Effects of the foot evolution on the behaviour of slow-moving landslides. Eng Geol. 117(3-4):217–228. doi:10.1016/j.enggeo.2010.11.001.
  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A. 2011. A new algorithm for processing interferometric data-stacks: squeeSAR. IEEE Trans Geosci Remote Sens. 49(9):3460–3470. doi:10.1109/TGRS.2011.2124465.
  • Hu J, Ding X-L, Li Z-W, Zhu J-J, Sun Q, Zhang L. 2013. Kalman-filter-based approach for multisensor, multitrack, and multitemporal InSAR. IEEE Trans Geosci Remote Sens. 51(7):4226–4239. doi:10.1109/TGRS.2012.2227759.
  • Hu J, Li Z, Ding X, Zhu J, Zhang L, Sun Q. 2014. Resolving three-dimensional surface displacements from InSAR measurements: a review. Earth Sci Rev. 133:1–17. doi:10.1016/j.earscirev.2014.02.005.
  • Hu X, Bürgmann R, Lu Z, Handwerger AL, Wang T, Miao R. 2019. Mobility, thickness, and hydraulic diffusivity of the slow‐moving Monroe landslide in California revealed by L‐band satellite radar interferometry. JGR Solid Earth. 124(7):7504–7518. doi:10.1029/2019JB017560.
  • Hu X, Burgmann R, Schulz WH, Fielding EJ. 2020. Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing. Nat Commun. 11(1):2792. doi:10.1038/s41467-020-16617-7.
  • Huang B, Yin Y, Liu G, Wang S, Chen X, Huo Z. 2012. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008. Landslides. 9(3):395–405. doi:10.1007/s10346-012-0331-y.
  • Hyvärinen A, Oja E. 1997. A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7):1483–1492. doi:10.1162/neco.1997.9.7.1483.
  • Hyvärinen A, Oja E. 2000. Independent component analysis: algorithms and applications. Neural Netw. 13(4-5):411–430. doi:10.1016/s0893-6080(00)00026-5.
  • Hyvarinen A. 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw. 10(3):626–634. doi:10.1109/72.761722.
  • Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferretti A, Casagli N. 2017. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides. 15(1):123–133. doi:10.1007/s10346-017-0915-7.
  • Jiang H, Li Y, Zhou C, Hong H, Glade T, Yin K. 2020. Landslide displacement prediction combining LSTM and SVR algorithms: a case study of Shengjibao landslide from the three gorges reservoir area. Applied Sciences. 10(21):7830. doi:10.3390/app10217830.
  • Karimzadeh S, Matsuoka M, Ogushi F. 2018. Spatiotemporal deformation patterns of the Lake Urmia Causeway as characterized by multisensor InSAR analysis. Sci Rep. 8(1):5357. doi:10.1038/s41598-018-23650-6.
  • Li C, Fu Z, Wang Y, Tang H, Yan J, Gong W, Yao W, Criss RE. 2019. Susceptibility of reservoir-induced landslides and strategies for increasing the slope stability in the Three Gorges Reservoir Area: zigui Basin as an example. Eng Geol. 261:105279. doi:10.1016/j.enggeo.2019.105279.
  • Li L, Yao X, Yao J, Zhou Z, Feng X, Liu X. 2019. Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China. Nat Hazards. 98(2):719–733. doi:10.1007/s11069-019-03726-w.
  • Li S, Xu Q, Tang M, Iqbal J, Liu J, Zhu X, Liu F, Zhu D. 2018. Characterizing the spatial distribution and fundamental controls of landslides in the three gorges reservoir area, China. Bull Eng Geol Environ. 78(6):4275–4290. doi:10.1007/s10064-018-1404-5.
  • Liao M, Tang J, Wang T, Balz T, Zhang L. 2011. Landslide monitoring with high-resolution SAR data in the Three Gorges region. Sci China Earth Sci. 55(4):590–601. doi:10.1007/s11430-011-4259-1.
  • Liu P, Li Z, Hoey T, Kincal C, Zhang J, Zeng Q, Muller J-P. 2013. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int J Appl Earth Obs Geoinf. 21:253–264. doi:10.1016/j.jag.2011.10.010.
  • Liu Y, Qiu H, Yang D, Liu Z, Ma S, Pei Y, Zhang J, Tang B. 2021. Deformation responses of landslides to seasonal rainfall based on InSAR and wavelet analysis. Landslides. 19(1):199–210. doi:10.1007/s10346-021-01785-4.
  • Paronuzzi P, Rigo E, Bolla A. 2013. Influence of filling–drawdown cycles of the Vajont reservoir on Mt. Toc slope stability. Geomorphology. 191:75–93. doi:10.1016/j.geomorph.2013.03.004.
  • Peng M, Lu Z, Zhao C, Motagh M, Bai L, Conway BD, Chen H. 2022. Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis. Remote Sens Environ. 271:112894. doi:10.1016/j.rse.2022.112894.
  • Petley D. 2012. Global patterns of loss of life from landslides. Geology. 40(10):927–930. doi:10.1130/G33217.1.
  • Samsonov S, Dille A, Dewitte O, Kervyn F, d‘Oreye N. 2020. Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: a new method illustrated on a slow-moving landslide. Eng Geol. 266:105471. doi:10.1016/j.enggeo.2019.105471.
  • Seguí C, Rattez H, Veveakis M. 2020. On the stability of deep‐seated landslides. The cases of Vaiont (Italy) and shuping (Three Gorges Dam, China). JGR Earth Surface. 125(7):e2019JF005203. doi:10.1029/2019JF005203.
  • Shi X, Liao M, Li M, Zhang L, Cunningham C. 2016. Wide-area landslide deformation mapping with multi-path ALOS PALSAR data stacks: a case study of three gorges area, China. Remote Sens. 8(2):136. doi:10.3390/rs8020136.
  • Shi X, Zhang L, Balz T, Liao M. 2015. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data. ISPRS J Photogramm Remote Sens. 105:128–140. doi:10.1016/j.isprsjprs.2015.03.017.
  • Shi X, Zhang L, Tang M, Li M, Liao M. 2017. Investigating a reservoir bank slope displacement history with multi-frequency satellite SAR data. Landslides. 14(6):1961–1973. doi:10.1007/s10346-017-0846-3.
  • Singleton A, Li Z, Hoey T, Muller JP. 2014. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens Environ. 147:133–144. doi:10.1016/j.rse.2014.03.003.
  • Sousa JJ, Hooper AJ, Hanssen RF, Bastos LC, Ruiz AM. 2011. Persistent scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens Environ. 115(10):2652–2663. doi:10.1016/j.rse.2011.05.021.
  • Tomás R, Li Z, Liu P, Singleton A, Hoey T, Cheng X. 2014. Spatiotemporal characteristics of the Huangtupo landslide in the Three Gorges region (China) constrained by radar interferometry. Geophys J Int. 197(1):213–232. doi:10.1093/gji/ggu017.
  • Tomás R, Li Z, Lopez-Sanchez JM, Liu P, Singleton A. 2015. Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide. Landslides. 13(3):437–450. doi:10.1007/s10346-015-0589-y.
  • Wang F-W, Zhang Y-M, Huo Z-T, Matsumoto T, Huang B-L. 2004. The July 14, 2003 Qianjiangping landslide, Three Gorges Reservoir, China. Landslides. 1(2):157–162. doi:10.1007/s10346-004-0020-6.
  • Wang J, Ward SN, Xiao L. 2019. Tsunami Squares modelling of the 2015 June 24 Hongyanzi landslide generated river tsunami in Three Gorges Reservoir, China. Geophysical Journal International. 216(1):287–295. doi:10.1093/gji/ggy425.
  • Wasowski J, Bovenga F, Nutricato R, Nitti DO, Chiaradia MT. 2017. Detection and Monitoring of Slow Landslides Using Sentinel-1 Multi-temporal Interferometry Products, 249–256.
  • Wasowski J, Bovenga F. 2014. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: current issues and future perspectives. Eng Geol. 174:103–138. doi:10.1016/j.enggeo.2014.03.003.
  • Wasowski J, Bovenga F. 2015. Remote sensing of landslide motion with emphasis on satellite multitemporal interferometry applications, 345–403.
  • Wasowski J, Pisano L. 2019. Long-term InSAR, borehole inclinometer, and rainfall records provide insight into the mechanism and activity patterns of an extremely slow urbanized landslide. Landslides. 17(2):445–457. doi:10.1007/s10346-019-01276-7.
  • Xiong Z, Feng G, Feng Z, Miao L, Wang Y, Yang D, Luo S. 2020. Pre- and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images. Eng Geol. 279:105880. doi:10.1016/j.enggeo.2020.105880.
  • Xu S, Niu R. 2018. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China. Computers & Geosciences. 111:87–96. doi:10.1016/j.cageo.2017.10.013.
  • Ye X, Zhu H-H, Cheng G, Pei H-F, Shi B, Schenato L, Pasuto A. 2023. Thermo-hydro-poro-mechanical responses of a reservoir-induced landslide tracked by high-resolution fiber optic sensing nerves. J Rock Mech Geotech Eng. doi:10.1016/j.jrmge.2023.04.004.
  • Ye X, Zhu HH, Wang J, Zhang Q, Shi B, Schenato L, Pasuto A. 2022. Subsurface multi‐physical monitoring of a reservoir landslide with the fiber‐optic nerve system. Geophys Res Lett. 49(11):e2022GL098211. doi:10.1029/2022GL098211.
  • Zhang L, Ding X, Lu Z. 2011. Modeling PSInSAR time series without phase unwrapping. IEEE Trans Geosci Remote Sens. 49(1):547–556. doi:10.1109/TGRS.2010.2052625.
  • Zhang L, Sun Q, Hu J. 2018. Potential of TCPInSAR in monitoring linear infrastructure with a small dataset of SAR images: Application of the Donghai Bridge, China. Appl Sci. 8(3):425. doi:10.3390/app8030425.
  • Zhou C, Cao Y, Yin K, Wang Y, Shi X, Catani F, Ahmed B. 2020. Landslide characterization applying sentinel-1 images and InSAR technique: the Muyubao landslide in the three gorges reservoir Area, China. Remote Sens. 12(20):3385. doi:10.3390/rs12203385.