732
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A brief overview and perspective of using airborne Lidar data for forest biomass estimation

&
Pages 1-24 | Received 26 Dec 2023, Accepted 21 Jan 2024, Published online: 25 Jan 2024

References

  • Ahmad, A., Gilani, H., and Ahmad, S.R., 2021. Forest aboveground biomass estimation and mapping through high-resolution optical satellite imagery—A literature review. Forests, 12 (7), 914. doi:10.3390/f12070914.
  • Anderson, J., et al., 2008. Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest. Remote Sensing of Environment, 112 (4), 1856–1870. doi:10.1016/j.rse.2007.09.009.
  • Araza, A., et al., 2022. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 272, 112917. doi:10.1016/j.rse.2022.112917
  • Berninger, A., et al., 2019. Canopy height and above-ground biomass retrieval in tropical forests using multi-pass X- and C-band pol-InSAR data. Remote Sensing, 11 (18), 2105. doi:10.3390/rs11182105.
  • Bouvier, M., et al. 2019. Influence of sampling design parameters on biomass predictions derived from airborne lidar data. Canadian Journal of Remote Sensing, 45 (5), 650–672. doi:10.1080/07038992.2019.1669013
  • Cao, L., et al., 2014. Using small-footprint discrete and full-waveform airborne lidar metrics to estimate total biomass and biomass components in subtropical forests. Remote Sensing, 6 (8), 7110–7135. doi:10.3390/rs6087110.
  • Cao, L., et al., 2016. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sensing of Environment, 178, 158–171. doi:10.1016/j.rse.2016.03.012
  • Cao, L., et al., 2019. Estimating canopy structure and biomass in bamboo forests using airborne lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 114–129. doi:10.1016/j.isprsjprs.2018.12.006
  • Catherine, T., et al., 2019. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian amazon using different regression algorithms. Remote Sensing of Environment, 232, 111323. doi:10.1016/j.rse.2019.111323.
  • Chen, Q., et al., 2007. Estimating basal area and stem volume for individual trees from Lidar data. Photogrammetric Engineering and Remote Sensing, 73 (12), 1355–1365. doi:10.14358/PERS.73.12.1355.
  • Chen, Q., et al., 2012. Integration of airborne Lidar and vegetation types derived from aerial photography for mapping aboveground live biomass. Remote Sensing of Environment, 121, 108–117. doi:10.1016/j.rse.2012.01.021
  • Chen, Q., 2013. Lidar remote sensing of vegetation biomass. In: Q. Weng and G. Wang, eds. Remote sensing of natural resources. Boca Raton: CRC Press: Taylor & Francis Group, pp. 399–420.
  • Chen, Y., et al. 2018. Exploring bamboo forest aboveground biomass estimation using sentinel-2 data. Remote Sensing, 11 (1), 7. doi:10.3390/rs11010007
  • Chi, H., et al. 2015. National forest aboveground biomass mapping from ICESat/GLAS data and MODIS imagery in China. Remote Sensing, 7 (5), 5534–5564. doi:10.3390/rs70505534
  • Christina, E., Claudia, K., and Stefan, D., 2012. Derivation of biomass information for semi-arid areas using remote-sensing data. International Journal of Remote Sensing, 33 (9), 2937–2984. doi:10.1080/01431161.2011.620034.
  • Chung, C., et al., 2019. Comparison of forest canopy height profiles in a mountainous region of Taiwan derived from airborne lidar and unmanned aerial vehicle imagery. GIScience & Remote Sensing, 56 (8), 1289–1304. doi:10.1080/15481603.2019.1627044.
  • Clark, M.L., et al., 2011. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. Remote Sensing of Environment, 115 (11), 2931–2942. doi:10.1016/j.rse.2010.08.029.
  • Coops, N., et al., 2021. Modelling lidar-derived estimates of forest attributes over space and time: a review of approaches and future trends. Remote Sensing of Environment, 260, 112477. doi:10.1016/j.rse.2021.112477
  • Crawford, C.J., et al., 2023. The 50-year landsat collection 2 archive. Science of Remote Sensing, 8, 100103. doi:10.1016/j.srs.2023.100103
  • Dai, W., et al., 2019. Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 156, 94–107. doi:10.1016/j.isprsjprs.2019.08.008
  • Domingo, D., et al. 2019. Temporal transferability of pine forest attributes modeling using low-density airborne laser scanning data. Remote Sensing, 11 (3), 261. doi:10.3390/rs11030261
  • Dong, P. and Chen, Q., 2018. LiDAR remote sensing and applications. New York, USA: CRC Press, Taylor & Francis Group.
  • Du, C., et al., 2021. The effect of synergistic approaches of features and ensemble learning algorithms on aboveground biomass estimation of natural secondary forests based on ALS and Landsat8. Sensors, 21 (17), 5974. doi:10.3390/s21175974.
  • Du, L., et al., 2023. A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds. Remote Sensing of Environment, 290, 113543. doi:10.1016/j.rse.2023.113543
  • Duncanson, L., et al., 2020. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment, 242, 111779. doi:10.1016/j.rse.2020.111779
  • Erb, K.H., et al., 2018. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 553 (7686), 73–76. doi:10.1038/nature25138.
  • Ewijk, K., et al. 2020. Transferability of ALS-derived forest resource inventory attributes between an eastern and western Canadian boreal forest mixed wood site. Canadian Journal of Remote Sensing, 46 (2), 214–236. doi:10.1080/07038992.2020.1769470
  • Fang, G., et al., 2022. Comparison of variable selection methods among dominant tree species in different regions on forest stock volume estimation. Forests, 13 (5), 787. doi:10.3390/f13050787.
  • Fassnacht, F.E., et al., 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154, 102–114. doi:10.1016/j.rse.2014.07.028
  • Fekety, P.A., et al., 2018. Transferability of Lidar-derived basal area and stem density models within a Northern Idaho ecoregion. Canadian Journal of Remote Sensing, 44 (2), 131–143. 1461557. doi:10.1080/07038992.2018.1461557
  • Fekety, P., Falkowski, M., and Hudak, A., 2015. Temporal transferability of Lidar-based imputation of forest inventory attributes. Canadian Journal of Forest Research, 45 (4), 422–435. doi:10.1139/cjfr-2014-0405.
  • Feng, H., et al. 2021. Estimation of forest aboveground biomass by using mixed-effects model. International Journal of Remote Sensing, 42 (22), 8675–8690. doi:10.1080/01431161.2021.1984611
  • Feng, Y., et al. 2017. Examining effective use of data sources and modeling algorithms for improving biomass estimation in a moist tropical forest of the Brazilian amazon. International Journal of Digital Earth, 10 (10), 996–1016. doi:10.1080/17538947.2017.1301581
  • Frazer, G.W., et al. 2011. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sensing of Environment, 115 (2), 636–649. doi:10.1016/j.rse.2010.10.008
  • Gao, Y., et al., 2018. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sensing, 10 (4), 627. doi:10.3390/rs10040627.
  • Gao, L., Chai, G., and Zhang, X., 2022. Above-ground biomass estimation of plantation with different tree species using airborne lidar and hyperspectral data. Remote Sensing, 14 (11), 2568. doi:10.3390/rs14112568.
  • Ghosh, S.M. and Behera, M.D., 2021. Aboveground biomass estimates of tropical mangrove forest using sentinel-1 SAR coherence data - the superiority of deep learning over a semi-empirical model. Computers & Geosciences, 150, 104737. doi:10.1016/j.cageo.2021.104737
  • Görgens, E., et al., 2015. Stand volume models based on stable metrics as from multiple ALS acquisitions in eucalyptus plantations. Annals of Forest Science, 72 (4), 489–498. doi:10.1007/s13595-015-0457-x.
  • Guo, Q., et al., 2018. Lidar principles, processing and applications in forest ecology. ISBN 9787040493016In Chinese. Beijing, China: Higher Education Press.
  • Heiskanen, J., et al., 2019. Do airborne laser scanning biomass prediction models benefit from landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes? International Journal of Applied Earth Observation and Geoinformation, 81, 176–185. doi:10.1016/j.jag.2019.05.017
  • Huang, Z., et al. 2022. Estimating mangrove above-ground biomass at Maowei Sea, Beibu Gulf of China using machine learning algorithm with sentinel-1 and sentinel-2 data. Geocarto International, 37 (27), 15778–15805. doi:10.1080/10106049.2022.2102226
  • Jiang, X., et al., 2020a. Modeling forest aboveground carbon density in the Brazilian amazon with integration of MODIS and airborne lidar data. Remote Sensing, 12 (20), 3330. doi:10.3390/rs12203330.
  • Jiang, X., et al., 2020b. Stratification-based forest aboveground biomass estimation in a subtropical region using airborne lidar data. Remote Sensing, 12 (7), 1101. doi:10.3390/rs12071101.
  • Jiang, X., 2021. Forest classification and biomass estimation based on multi-source data in a typical subtropical region [D]. Zhejiang Agriculture & Forest University. doi:10.27756/d.cnki.gzjlx.2020.000274.
  • Jiang, X., et al., 2023. Eucalyptus carbon stock estimation in subtropical regions with the modeling strategy of sample plots – airborne LiDAR – landsat time series data. Forest Ecosystems, 10, 100149. doi:10.1016/j.fecs.2023.100149
  • Jurjević, L., et al., 2020. Is field-measured tree height as reliable as believed – part II, a comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 227–241. doi:10.1016/j.isprsjprs.2020.09.014
  • Laura, D., et al., 2022. Aboveground biomass density models for nasa’s global ecosystem dynamics investigation (GEDI) lidar mission. Remote Sensing of Environment, 270, 112845. doi:10.1016/j.rse.2021.112845.
  • Li, G., et al., 2012. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 26–38. doi:10.1016/j.isprsjprs.2012.03.010
  • Li, G., et al., 2019. Integration of ZiYuan-3 multispectral and stereo data for modeling aboveground biomass of larch plantations in North China. Remote Sensing, 11 (19), 2328. doi:10.3390/rs11192328.
  • Liang, M., et al., 2023. Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI lidar and landsat. Remote Sensing of Environment, 284, 113367. doi:10.1016/j.rse.2022.113367
  • Liang, X., et al., 2018. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 137–179. doi:10.1016/j.isprsjprs.2018.06.021
  • Liao, K., et al., 2022. Examining the role of UAV Lidar data in improving tree volume calculation accuracy. Remote Sensing, 14 (17), 4410. doi:10.3390/rs14174410.
  • Lin, W., et al., 2022. A comparative analysis of modeling approaches and canopy height-based data sources for mapping forest growing stock volume in a northern subtropical ecosystem of China. GIScience & Remote Sensing, 59 (1), 568–589. doi:10.1080/15481603.2022.2044139.
  • Li, Z., Qingwang, L., and Yong, P., 2016. Review on forest parameters inversion using LiDAR. National Remote Sensing Bulletin, 20 (5), 1138–1150. doi:10.11834/jrs.20165130.
  • Longo, M., et al., 2016. Aboveground biomass variability across intact and degraded forests in the Brazilian amazon. Global Biogeochemical Cycles, 30 (11), 1639–1660. doi:10.1002/2016GB005465.
  • Lu, D., 2005. Aboveground biomass estimation using landsat TM data in the Brazilianamazon. International Journal of Remote Sensing, 26 (12), 2509–2525. doi:10.1080/01431160500142145.
  • Lu, D., 2006. The potential and challenge of remote sensing–based biomass estimation. International Journal of Remote Sensing, 27 (7), 1297–1328. doi:10.1080/01431160500486732.
  • Lu, D., et al., 2012. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research, 2012, 1–16. doi:10.1155/2012/436537.
  • Lu, D., et al. 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9 (1), 63–105. doi:10.1080/17538947.2014.990526
  • Lu, D., Batistella, M., and Moran, E., 2005. Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogrammetric Engineering and Remote Sensing, 71 (8), 967–974. doi:10.14358/PERS.71.8.967.
  • Luo, S., et al., 2017. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecological Indicators, 73, 378–387. doi:10.1016/j.ecolind.2016.10.001
  • Marchesan, J., et al., 2023. Aboveground biomass stock and change estimation in amazon rainforest using airborne light detection and ranging, multispectral data, and machine learning algorithms. Journal of Applied Remote Sensing, 17 (2). doi:10.1117/1.JRS.17.024509.
  • McGaughey, R.J., 2009. FUSION/LDV: software for LIDAR data analysis and visualization. Seattle, WA: USDA Forest Service. Pacific Northwest Research Station.
  • Michael, J., et al., 2021. Scaled biomass estimation in woodland ecosystems: testing the individual and combined capacities of satellite multispectral and lidar data. Remote Sensing of Environment, 262, 112511. doi:10.1016/j.rse.2021.112511.
  • Mo, L., et al., 2023. Integrated global assessment of the natural forest carbon potential. Nature, 624 (7990), 92–101. doi:10.1038/s41586-023-06723-z.
  • Molina, P.X., et al., 2016. Spatially-explicit testing of a general aboveground carbon density estimation model in a western amazonian forest using airborne lidar. Remote Sensing, 8 (1), 9. doi:10.3390/rs8010009.
  • Naesset, E. and Gobakken, T., 2008. Estimation of above and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment, 112 (6), 3079–3090. doi:10. 1016/j.rse.2008.03004.
  • Navarro, J., et al., 2020. Assessing the transferability of airborne laser scanning and digital aerial photogrammetry derived growing stock volume models. International Journal of Applied Earth Observation and Geoinformation, 91, 102135. doi:10.1016/j.jag.2020.102135
  • Nie, S., et al., 2017. Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest. Ecological Indicators, 78, 221–228. doi:10.1016/j.ecolind.2017.02.045
  • Passel, J.V., Keersmaecker, W.D., and Somers, B., 2020. Monitoring woody cover dynamics in tropical dry forest ecosystems using sentinel-2 satellite imagery. Remote Sensing, 12 (8), 1276. doi:10.3390/rs12081276.
  • Patrick, A., et al., 2018. Transferability of lidar-derived basal area and stem density models within a northern Idaho ecoregion. Canadian Journal of Remote Sensing, 44 (2), 131–143. doi:10.1080/07038992.2018.1461557.
  • Phalla, T., et al., 2017. The importance of tree height in estimating individual tree biomass while considering errors in measurements and allometric models. AGRIVITA Journal of Agricultural Science, 40 (1), 131–140. doi:10.17503/agrivita.v40i1.1730.
  • Phua, M., et al., 2016. Estimating logged-over lowland rainforest aboveground biomass in Sabah, Malaysia using airborne lidar data. Terrestrial Atmospheric and Oceanic Sciences, 27 (4), 481–489. doi:10.3319/TAO.2016.01.06.02.
  • Poorazimy, M., et al., 2020. Integrating airborne laser scanning data, space-borne radar data and digital aerial imagery to estimate aboveground carbon stock in hyrcanian forests, Iran. Remote Sensing of Environment, 240, 111669. doi:10.1016/j.rse.2020.111669
  • Puliti, S., et al., 2018. Combining UAV and sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sensing of Environment, 204, 485–497. doi:10.1016/j.rse.2017.10.007
  • Rex, F.E., et al., 2020. Comparison of statistical modelling approaches for estimating tropical forest aboveground biomass stock and reporting their changes in low-intensity logging areas using multi-temporal lidar data. Remote Sensing, 12 (9), 1498. 1498. doi:10.3390/rs12091498
  • Roussel, J.R., et al., 2017. Removing bias from LiDAR-based estimates of canopy height: accounting for the effects of pulse density and footprint size. Remote Sensing of Environment, 198, 1–16. doi:10.1016/j.rse.2017.05.032
  • Ruusa, M., Rosser, N.J., and Donoghue, D.N.M., 2022. Improving above ground biomass estimates of Southern Africa dryland forests by combining sentinel-1 SAR and sentinel-2 multispectral imagery. Remote Sensing of Environment, 282, 113232. doi:10.1016/j.rse.2022.113232
  • Ryan, S. and Paul, V., 2013. Estimating aboveground biomass and average annual wood biomass increment with airborne leaf-on and leaf-off lidar in great lakes forest types. Northern Journal of Applied Forestry, 30 (1), 16–22. doi:10.5849/njaf.12-015.
  • Schlund, M., Scipal, K., and Davidson, M., 2017. Forest classification and impact of BIOMASS resolution on forest area and aboveground biomass estimation. International Journal of Applied Earth Observation and Geoinformation, 56, 65–76. doi:10.1016/j.jag.2016.12.001
  • Shen, H. and Zhang, L., 2023. Earth surface feature parameter inversion and simulation: a mechanistic-learning coupling paradigm. China Science: Earth Science, 53 (3), 546–560. doi:10.1360/SSTe-2022-0089.
  • Shin, J., et al. 2016. Comparing modeling methods for predicting forest attributes using LiDAR metrics and ground measurements. Canadian Journal of Remote Sensing, 42 (6), 739–765. doi:10.1080/07038992.2016.1252908
  • Silveira, E., et al., 2019. Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment. International Journal of Applied Earth Observation and Geoinformation, 78, 175–188. doi:10.1016/j.jag.2019.02.004
  • Somayeh, T. and Ali, S., 2022. Global-scale biomass estimation based on machine learning and deep learning methods. Remote Sensing Applications: Society & Environment, 28, 100868. doi:10.1016/j.rsase.2022.100868
  • Sousa, C., et al., 2023. Size of sampling units appropriate for management level forest inventory in Eastern Amazon, Brazil. Revista em Agronegócio e Meio Ambiente, 16 (2), 1–13. doi:10.17765/2176-9168.2023v16n2e10938.
  • Stereńczak, K., et al., 2020. Global airborne laser scanning data providers database (GlobALS)-A new tool for monitoring ecosystems and biodiversity. Remote Sensing, 12 (11), 1877. doi:10.3390/rs12111877.
  • Tamga, K., et al., 2023. Estimation of aboveground biomass in agroforestry systems over three climatic regions in West Africa using sentinel-1, sentinel-2, ALOS, and GEDI data. Sensors, 23 (1), 349. doi:10.3390/s23010349.
  • Tamiminia, H., et al., 2022. Evaluating pixel-based and object-based approaches for forest aboveground biomass estimation using a combination of optical, SAR, and an extreme gradient boosting model. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 485–492. doi:10.5194/isprs-annals-V-3-2022-485-2022.
  • Tang, Z., et al., 2022. Estimation of national forest aboveground biomass from multi-source remotely sensed dataset with machine learning algorithms in China. Remote Sensing, 14 (21), 5487. doi:10.3390/rs14215487.
  • Tian, L., et al. 2023. Review of remote sensing-based methods for forest aboveground biomass estimation: progress, challenges, and prospects. Forests, 14 (6), 1086. doi:10.3390/f14061086
  • Tompalski, P., et al. 2019. Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data. Remote Sensing of Environment, 227, 110–124. doi:10.1016/j.rse.2019.04.006 [ 006].
  • Vaglio Laurin, G., et al., 2014. Above ground biomass estimation in an African tropical forest with Lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 49–58. doi:10.1016/j.isprsjprs.2014.01.001
  • Walker, W.S., et al., 2022. The global potential for increased storage of carbon on land. PNAS, 119 (23), e2111312119. doi:10.1073/pnas.2111312119.
  • Wang, M., et al. 2019a. Airborne Lidar-derived aboveground biomass estimates using a hierarchical Bayesian approach. Remote Sensing, 11 (9), 1050. doi:10.3390/rs11091050
  • Wang, Y., et al., 2019b. Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 132–145. doi:10.1016/j.isprsjprs.2018.11.008
  • Wang, R., et al., 2023. A comparative analysis of grid-based and object-based modeling approaches for poplar forest growing stock volume estimation in plain regions using airborne LIDAR data. Geo-Spatial Information Science, 1–19. doi:10.1080/10095020.2023.2169199.
  • Wang, C. and Blei, D.M., 2018. A general method for robust Bayesian modeling. Bayesian Analysis, 13 (4), 1163–1191. doi:10.1214/17-BA1090.
  • Werkowska, W., et al. 2017. A practical overview of transferability in species distribution modeling. Environmental Reviews, 25 (1), 127–133. doi:10.1139/er2016-0045
  • Xiao, J., et al., 2019. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sensing of Environment, 233, 111383. doi:10.1016/j.rse.2019.111383
  • Xie, D., et al., 2023. Aboveground biomass prediction of arid shrub-dominated community based on airborne Lidar through parametric and nonparametric methods. Remote Sensing, 15 (13), 3344. doi:10.3390/rs15133344.
  • Xu, T., et al., 2015. Estimates of subtropical forest biomass based on airborne LiDAR and landsat 8 OLI data. Chinese Journal of Plant Ecology, 39 (4), 309–321. doi:10.17521/cjpe.2015.0030.
  • Yang, M., et al., 2023. Developing allometric equations to estimate forest biomass for tree species categories based on phylogenetic relationships. Forest Ecosystems, 10, 100130. doi:10.1016/j.fecs.2023.100130
  • Zeng, W., Chen, X., and Yang, X., 2023. Estimating changes of forest carbon storage in China for 70 years (1949–2018). Scientific Reports, 13 (1), 16864. doi:10.1038/s41598-023-44097-4.
  • Zhang, L., et al. 2019. Deep learning based retrieval of forest aboveground biomass from combined Lidar and landsat 8 data. Remote Sensing, 11 (12), 1459. doi:10.3390/rs11121459
  • Zhang, Y., et al., 2023. Forest structure simulation of eucalyptus plantation using remote-sensing-based forest age data and 3-PG model. Remote Sensing, 15 (1), 183. doi:10.3390/rs15010183.
  • Zhao, P., et al., 2016a. Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sensing, 8 (6), 469. doi:10.3390/rs8060469.
  • Zhao, P., et al., 2016b. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. International Journal of Applied Earth Observation and Geoinformation, 53, 1–15. doi:10.1016/j.jag.2016.08.007
  • Zhao, X., et al., 2016. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 79–91. doi:10.1016/j.isprsjprs.2016.03.016
  • Zhao, Y., et al., 2023. Towards accurate individual tree parameters estimation in dense forest: optimized coarse-to-fine algorithms for registering UAV and terrestrial LiDAR data. GIScience & Remote Sensing, 60 (1), 2197281. doi:10.1080/15481603.2023.2197281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.