2,466
Views
14
CrossRef citations to date
0
Altmetric
Research paper

Deletion of the lon gene augments expression of Salmonella Pathogenicity Island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance

, , , &
Pages 1695-1712 | Received 15 Mar 2020, Accepted 26 May 2020, Published online: 21 Jun 2020

References

  • Takaya A, Suzuki M, Matsui H, Tomoyasu T, Sashinami H, Nakane A, Yamamoto T. Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar Typhimurium infection of mice. Infect Immun. 2003;17:690–696. doi:10.1128/iai.71.2.690-696.2003.
  • Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T. The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J Bacteriol. 2002;184:224–232. doi:10.1128/jb.184.1.224-232.2002.
  • Maurizi MR. Proteases and protein degradation in Escherichia coli. Experientia. 1992;48:178–201. doi:10.1007/BF01923511.
  • Gottesman S. Proteases and their targets in Escherichia coli. Annu Rev Genet. 1996;30:465–506. doi:10.1146/annurev.genet.30.1.465.
  • Smith CK, Baker TA, Sauer RT. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A. 1999;96:6678–6682. doi:10.1073/pnas.96.12.6678.
  • Micevski D, Dougan DA. Proteolytic regulation of stress response pathways in Escherichia coli. Subcellular Biochem. 2013:105–128. doi:10.1007/978-94-007-5940-4.
  • Nicoloff H, Andersson DI. Lon protease inactivation, or translocation of the lon gene, potentiate bacterial evolution to antibiotic resistance. Mol Microbiol. 2013;90:1233–1248. doi:10.1111/mmi.12429.
  • Bajaj V, Hwang C, Lee CA. hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol. 1995;18:715–727. doi:10.1111/j.1365-2958.1995.mmi_18040715.x.
  • Lucas RL, Lee CA. Roles of hilC and hilD in regulation of hilA expression in Salmonella enterica serovar typhimurium. J Bacteriol. 2001;183:2733–2745. doi:10.1128/JB.183.9.2733-2745.2001.
  • Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;180:820–832. doi:10.1038/nrmicro1004.
  • Qi L, Hu M, Fu J, Liu Y, Wu M, Yu K, Liu X. Quantitative proteomic analysis of host epithelial cells infected by Salmonella enterica serovar Typhimurium. Proteomics. 2017;17:1700092. doi:10.1002/pmic.201700092.
  • Liu Y, Zhang Q, Hu M, Yu K, Fu J, Zhou F, Liu X. Proteomic analyses of intracellular Salmonella enterica serovar typhimurium reveal extensive bacterial adaptations to infected host epithelial cells. Infect Immun. 2015;83:2897–2906. doi:10.1128/IAI.02882-14.
  • Wemyss MA, Pearson JS. Host cell death responses to non-typhoidal Salmonella infection. Front Immunol. 2019;26:1758. doi:10.3389/fimmu.2019.01758.
  • Bumann D, Schothorst J. Intracellular Salmonella metabolism. Cell Microbiol. 2017;19:e12766. doi:10.1111/cmi.12766.
  • Eisenreich W, Rudel T, Heesemann J, Goebel W. How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Front Cell Infect Microbiol. 2019;9:42. doi:10.3389/fcimb.2019.00042.
  • Shan Y, Lai Y, Yan A. Metabolic reprogramming under microaerobic and anaerobic conditions in bacteria. Reprogramming Microb Metab Pathways. 2012;64:159–179. Springer. doi:10.1007/978-94-007-5055-5_8.
  • McBee ME, Chionh YH, Sharaf ML, Ho P, Cai MWL, Dedon PC. Production of superoxide in bacteria is stress-and cell state-dependent: a gating-optimized flow cytometry method that minimizes ROS measurement artifacts with fluorescent dyes. Front Microbiol. 2017;8:459. doi:10.3389/fmicb.2017.00459.
  • Touati D. Iron and oxidative stress in bacteria. Arch Biochem Biophys. 2000;373:1–6. doi:10.1006/abbi.1999.1518.
  • Touati D, Jacques M, Tardat B, Bouchard L, Despied S. Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol. 1995;177:2305–2314. doi:10.1128/jb.177.9.2305-2314.1995.
  • Parent MA, Goenka R, Murphy E, LeVier K, Carreiro N, Golding B, Ferguson G, Ii Rm R, Walker GC, Baldwin CL. Brucella abortus bacA mutant induces greater pro-inflammatory cytokines than the wild-type parent strain. Microbes Infect. 2007;9:55–62. doi:10.1016/j.micinf.2006.10.008.
  • Farr SB, Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1991;55:561–585. doi:10.1128/MMBR.55.4.561-585.1991.
  • Dupré-Crochet S, Erard M, Nüβe O. ROS production in phagocytes: why, when, and where? J Leukoc Biol. 2013;94:657–670. doi:10.1189/jlb.1012544.
  • He L, Luo D, Yang F, Li C, Zhang X, Deng H, Zhang J-R. Multiple domains of bacterial and human Lon proteases define substrate selectivity. Emerg Microbes Infect. 2018;7:1–18. doi:10.1038/s41426-018-0148-4.
  • Bustamante VH, Martinez LC, Santana FJ, Knodler LA, Steele-Mortimer O, Puente JL. HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc Natl Acad Sci. 2008;105:14591–14596. doi:10.1073/pnas.0801205105.
  • Lee HY, Biswas D, Ahn J. In-vitro adhesion and invasion properties of Salmonella typhimurium competing with bacteriophage in epithelial cells and chicken macrophages. Rev Bras Cienc Avic. 2015;17:427–432. doi:10.1590/1516-635X1704427-432.
  • Elhadad D, Desai P, Grassl GA, McClelland M, Rahav G, Gal-Mor O. Differences in host cell invasion and Salmonella pathogenicity island 1 expression between Salmonella enterica serovar Paratyphi A and nontyphoidal S. Typhimurium. Infect Immun. 2016;84:1150–1165. doi:10.1128/IAI.01461-15.
  • Que F, Wu S, Huang R. Salmonella pathogenicity Island 1(SPI-1) at work. Curr Microbiol. 2013;66:582–587. doi:10.1007/s00284-013-0307-8.
  • Lou L, Zhang P, Piao R, Wang Y. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol. 2019;9:270. doi:10.3389/fcimb.2019.00270.
  • Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe. 2017;22:217–231. doi:10.1016/j.chom.2017.07.009.
  • Figueira R, Holden DW. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology. 2012;5(8):501–511. doi:10.1046/j.1462-5822.2003.00294.x.
  • Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, et al. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen. 2012;1:243–258. doi:10.1002/mbo3.28.
  • Boumart Z, Velge P, Wiedemann A. Multiple invasion mechanisms and different intracellular behaviors: a new vision of Salmonella-host cell interaction. FEMS Microbiol Lett. 2014;361:1–7. doi:10.1111/1574-6968.12614.
  • Korshunov S, Imlay JA. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol. 2010;75:1389–1401. doi:10.1111/j.1365-2958.2010.07059.x.
  • Imlay JA. Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol. 2015;24:124–131. doi:10.1016/j.mib.2015.01.004.
  • Bedard K, Lardy B, Krause K-H. NOX family NADPH oxidases: not just in mammals. Biochimie. 2007;89:1107–1112. doi:10.1016/j.biochi.2007.01.012.
  • Clifford DP, Repine JE. Hydrogen peroxide mediated killing of bacteria. Mol Cell Biochem. 1982;49:143–149. doi:10.1007/bf00231175.
  • Kumar SR, Imlay JA. How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway. J Bacteriol. 2013;195:4569–4579. doi:10.1128/JB.00737-13.
  • Pérez-Toledo M, Valero-Pacheco N, Pastelin-Palacios R, Gil-Cruz C, Perez-Shibayama C, Moreno-Eutimio MA, Becker I, Pérez-Tapia SM, Arriaga-Pizano L, Cunningham AF, et al. Salmonella typhi porins OmpC and OmpF are potent adjuvants for T-dependent and T-independent antigens. Front Immunol. 2017;8:230. doi:10.3389/fimmu.2017.00230.
  • Nagy TA, Moreland SM, Andrews-Polymenis H, Detweiler CS. The ferric enterobactin transporter fep is required for persistent Salmonella enterica serovar typhimurium infection. Infect Immun. 2013;81(11):4063–4070. doi:10.1128/IAI.00412-13.
  • Newman SL, Will WR, Libby SJ, Fang FC. The curli regulator CsgD mediates stationary phase counter-silencing of csgBA in Salmonella Typhimurium. Mol Microbiol. 2018;108(1):101–114. doi:10.1111/mmi.13919.
  • Jubete Y, Maurizi MR, Gottesmanf S. Role of the heat shock protein DnaJ in the Lon-dependent degradation of naturally unstable proteins. J Biol Chem. 1996;271:30798–30803. doi:10.1074/jbc.271.48.30798.
  • Phillips TA, VanBogelen RA, Neidhardt FC. Lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol. 1984;159:283–287. doi:10.1128/JB.159.1.283-287.1984.
  • Sleymi S, Lahbib K, Rahmouni N, Rzaigui M, Besbes-Hentati S, Abid S. Synthesis, characterization, electrochemical investigation and antioxidant activities of a new hybrid cyclohexaphosphate: cu1.5Li(C2H10N2)P6O18·7H2O. J Mol Struct. 2017;1144:406–414. doi:10.1016/j.molstruc.2017.05.071.
  • Thomas KJ, Rice CV. Revised model of calcium and magnesium binding to the bacterial cell wall. Biometals. 2014;27:1361–1370. doi:10.1007/s10534-014-9797-5.
  • Tsilibaris V, Maenhaut-Michel G, Van Melderen L. Biological roles of the Lon ATP-dependent protease. Res Microbiol. 2006;157:701–713. doi:10.1016/j.resmic.2006.05.004.
  • Mizuno Y, Takada H, Nomura A, Jin CH, Hattori H, Ihara K, Aoki T, Eguchi K, Hara T. Th1 and Th1-inducing cytokines in Salmonella infection. Clin Exp Immunol. 2003;131:111–117. doi:10.1046/j.1365-2249.2003.02060.x.
  • Franchi L. Role of inflammasomes in Salmonella infection. Front Microbiol. 2011;2:8. doi:10.3389/fmicb.2011.00008.
  • Fenlon LA, Slauch JM. Phagocyte roulette in Salmonella killing. Cell Host Microbe. 2014;15(1):7–8. doi:10.1016/j.chom.2014.01.001.
  • Drecktrah D, Knodler LA, Ireland R, Steele-Mortimer O. The mechanism of Salmonella entry determines the vacuolar environment and intracellular gene expression. Traffic. 2006;7:39–51. doi:10.1111/j.1600-0854.2005.00360.x.
  • Steinberg BE, Grinstein S. Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants. J Clin Invest. 2008;118:2002–2011. doi:10.1172/JCI35433.
  • Jiang L, Feng L, Yang B, Zhang W, Wang P, Jiang X, Wang L. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion. PLoS Pathog. 2017;13:e1006429. doi:10.1371/journal.ppat.1007997.
  • Nishii W, Kukimoto-Niino M, Terada T, Shirouzu M, Muramatsu T, Kojima M, Kihara H, Yokoyama S. A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis. Nat Chem Biol. 2015;11:46. doi:10.1038/nchembio.1688.
  • Jennewein J, Matuszak J, Walter S, Felmy B, Gendera K, Schatz V, Nowottny M, Liebsch G, Hensel M, Hardt WD. Low oxygen tensions found in Salmonella infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence. Cell Microbiol. 2015;17:1833–1847. doi:10.1111/cmi.12476.
  • Ilyas B, Tsai CN, Coombes BK. Evolution of Salmonella-host cell interactions through a dynamic bacterial genome. Front Cell Infect Microbiol. 2017;7:428. doi:10.3389/fcimb.2017.00428.
  • Pilar AVC, Reid-Yu SA, Cooper CA, Mulder DT, Coombes BK. GogB is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1. PLoS Pathog. 2012:8. doi:10.1371/journal.ppat.1002773.
  • Birhanu BT, Park N-H, Lee S-J, Hossain MA, Park S-C. Inhibition of Salmonella Typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofloxacin. Vet Res. 2018;49:101. doi:10.1186/s13567-018-0597-8.
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci. 2000;97:6640–6645. doi:10.1073/pnas.120163297.
  • Takaya A, Kubota Y, Isogai E, Yamamoto T. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. Mol Microbiol. 2005;55:839–852. doi:10.1111/j.1365-2958.2004.04425.x.
  • Chandrapala D, Kim K, Choi Y, Senevirathne A, Kang DH, Ryu S, Kim KP. Putative inv is essential for basolateral invasion of Caco-2 cells and acts synergistically with OmpA to affect in vitro and in vivo virulence of Cronobacter sakazakii ATCC 29544. Infect Immun. 2014;82:1755–1765. doi:10.1128/IAI.01397-13.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi:10.1006/meth.2001.1262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.