2,923
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Technical versus biological variability in a synthetic human gut community

, , , , & ORCID Icon
Article: 2155019 | Received 06 Jul 2022, Accepted 30 Nov 2022, Published online: 29 Dec 2022

References

  • Blumberg R, Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci Transl Med. 2012;4(137):137rv7. doi:10.1126/scitranslmed.3004184.
  • Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordont JI, Backhed F. Host-bacterial mutualism in the human intestine. Science. 2016;307(5717):1915–15. doi:10.1126/science.1104816.
  • Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1). doi:10.1186/s13073-016-0307-y.
  • Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. doi:10.1126/science.1237439.
  • Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12(5):R50. doi:10.1186/gb-2011-12-5-r50.
  • Leeming ER, Johnson AJ, Spector TD, Roy CIL. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients. 2019;11(12):2862. doi:10.3390/NU11122862.
  • Frazier K, Chang EB. Intersection of the gut microbiome and circadian rhythms in metabolism. Trends Endocrinol Metab. 2020;31(1):25. doi:10.1016/J.TEM.2019.08.013.
  • Becks L, Hilker FM, Malchow H, Jürgens K, Arndt H. Experimental demonstration of chaos in a microbial food web. Nature. 2005;435(7046):1226–1229. doi:10.1038/nature03627.
  • Silverman JD, Durand HK, Bloom RJ, Mukherjee S, David LA. Dynamic linear models guide design and analysis of microbiota studies within artificial human guts. Microbiome. 2018;6(1):202. doi:10.1186/s40168-018-0584-3.
  • Possemiers S, Verthé K, Uyttendaele S, Verstraete W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol. 2004;49(3):495–507. doi:10.1016/J.FEMSEC.2004.05.002.
  • van de Wiele T, van den Abbeele P, Ossieur W, Possemiers S, Marzorati M. The simulator of the human intestinal microbial ecosystem (SHIME ®). Impact Food Bioact Heal Vitr Ex Vivo Model. 2015;305–317. doi:10.1007/978-3-319-16104-4_27.
  • Minekus M. The TNO gastro-intestinal model (TIM). Impact Food Bioact Heal Vitr Ex Vivo Model. 2015. doi:10.1007/978-3-319-16104-4_5.
  • Venturelli OS, Carr AC, Fisher G, Hsu RH, Lau R, Bowen BP, Hromada S, Northen T, Arkin AP. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol. 2018;14(6):e8157. doi:10.15252/msb.20178157.
  • Krause JL, Schaepe SS, Fritz-Wallace K, Engelmann B, Rolle-Kampczyk U, Kleinsteuber S, Schattenberg F, Liu Z, Mueller S, Jehmlich N, et al. Following the community development of SIHUMIx–a new intestinal in vitro model for bioreactor use. Gut Microbes. 2020;11(4):1116–1129. doi:10.1080/19490976.2019.1702431.
  • Trosvik P, Rudi K, Strætkvern KO, Jakobsen KS, Næs T, Stenseth NC. Web of ecological interactions in an experimental gut microbiota. Environ Microbiol. 2010;12(10):2677–2687. doi:10.1111/j.1462-2920.2010.02236.x.
  • Oliphant K, Parreira VR, Cochrane K, Allen-Vercoe E. Drivers of human gut microbial community assembly: coadaptation, determinism and stochasticity. ISME J. 2019;13(12):3080–3092. doi:10.1038/s41396-019-0498-5.
  • Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol. 2002;52(5):1615–1620. doi:10.1099/00207713-52-5-1615.
  • Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD. Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol. 1996;166(3):176–183. doi:10.1007/s002030050373.
  • Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydroge. Int J Syst Evol Microbiol. 2008;58(8):1896–1902. doi:10.1099/ijs.0.65208-0.
  • Kageyama A, Benno Y, Nakase T. Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. Int J Syst Bacteriol. 1999;49(2):557–565. doi:10.1099/00207713-49-2-557.
  • Eggerth AH, Gagnon BH. The bacteroides of human feces. J Bacteriol. 1933;25(4):389–413. doi:10.1128/jb.25.4.389-413.1933.
  • Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y. Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2007;57(5):941–946. doi:10.1099/ijs.0.64778-0.
  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi:10.1038/nature09944.
  • Costea PI, Hildebrand F, Manimozhiyan A, Bäckhed F, Blaser MJ, Bushman FD, De Vos WM, Ehrlich SD, Fraser CM, Hattori M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2017;3(1):8–16. doi:10.1038/s41564-017-0072-8.
  • van de Velde CC, Joseph C, Biclot A, Huys GRB, Pinheiro VB, Bernaerts K, Raes J, Faust K. Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME Commun. 2022;2(1):40. doi:10.1038/s43705-022-00123-6.
  • Brooks JP, Edwards DJ, Harwich MD, Rivera MC, Fettweis JM, Serrano MG, Reris RA, Sheth NU, Huang B, Girerd P, et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies Ecological and evolutionary microbiology. BMC Microbiol. 2015;15(1):66. doi:10.1186/S12866-015-0351-6.
  • Teng F, Darveekaran Nair SS, Zhu P, Li S, Huang S, Li X, Xu J, Yang F. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci Rep. 2018;8(1):16321. doi:10.1038/s41598-018-34294-x.
  • Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10(5):323–335. doi:10.1038/nrmicro2746.
  • Tuson HH, Foley MH, Koropatkin NM, Biteen JS. The starch utilization system assembles around stationary starch-binding proteins. Biophys J. 2018;114(2):242–250. doi:10.1016/J.BPJ.2017.12.015.
  • Beller L, Deboutte W, Falony G, Vieira-Silva S, Tito RY, Valles-Colomer M, Rymenans L, Jansen D, Van Espen L, Papadaki MI, et al. Successional stages in infant gut microbiota maturation. MBio. 2021;12(6):e1857–21. doi:10.1128/MBIO.01857-21.
  • Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, Greenhalgh K, Jäger C, Baginska J, Wilmes P, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2016;35(1):81–89. doi:10.1038/nbt.3703.
  • D’hoe K, Vet S, Faust K, Moens F, Falony G, Gonze D, Llorens-Rico V, Gelens L, Danckaert J, De Vuyst L, et al. Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. Elife. 2018;7:e37090. doi:10.7554/eLife.37090.
  • Laverde Gomez JA, Mukhopadhya I, Duncan SH, Louis P, Shaw S, Collie-Duguid E, Crost E, Juge N, Flint HJ. Formate cross-feeding and cooperative metabolic interactions revealed by transcriptomics in co-cultures of acetogenic and amylolytic human colonic bacteria. Environ Microbiol. 2019;21(1):259–271. doi:10.1111/1462-2920.14454.
  • Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, Gordon JI. Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem. 2010;285(29):22082–22090. doi:10.1074/JBC.M110.117713.
  • Shetty SA, Kostopoulos I, Geerlings SY, Smidt H, de Vos WM, Belzer C. Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME J. 2022;16(9):2144–2159. doi:10.1038/s41396-022-01255-2.
  • Rettedal EA, Gumpert H, Sommer MOA. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun. 2014;5(1):4714. doi:10.1038/ncomms5714.
  • Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017;551(7681):507–511. doi:10.1038/nature24460.
  • Özel Duygan BD, Hadadi N, Babu AF, Seyfried M, van der Meer JR. Rapid detection of microbiota cell type diversity using machine-learned classification of flow cytometry data. Commun Biol. 2020;3(1):379. doi:10.1038/s42003-020-1106-y.
  • Rubbens P, Props R, Boon N, Waegeman W. Flow cytometric single-cell identification of populations in synthetic bacterial communities. PLoS One. 2017;12(1):e0169754. doi:10.1371/journal.pone.0169754.
  • Bio Rad Laboratories. 1994. Guide to Aminex® HPLC columns: for food and beverage, biotechnology, and bio-organic analysis. http://www.hplc.sk/pdf/Biorad/Guide_to_Aminex_HPLC_columns.pdf
  • Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, and Vandeputte D, et al. Population-level analysis of gut microbiome variation. Science (80-). 2016;352(6285):560–564. doi:10.1126/science.aad3503.
  • Hildebrand F, Tadeo R, Voigt AY, Bork P, Raes J. LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome. 2014;2(1):30. doi:10.1186/2049-2618-2-30.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi:10.1128/AEM.00062-07.
  • Madden T. The BLAST Sequence Analysis Tool. In: McEntyre J, Ostell J, editors. Bethesda (MD): NCBI Handb; 2002.
  • Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015;43(D1):593–598. doi:10.1093/nar/gku1201.