3,380
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Differential response to prolonged amoxicillin treatment: long-term resilience of the microbiome versus long-lasting perturbations in the gut resistome

, , , , , , ORCID Icon, , , & ORCID Icon show all
Article: 2157200 | Received 26 Aug 2022, Accepted 30 Nov 2022, Published online: 28 Dec 2022

References

  • United IACG. No time to wait–securing the future from drug-resistant infections. 2019.
  • World Health Organization. 2014. Antimicrobial resistance: global report on surveillance. World Health Organization. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Antimicrobial+resistance%3A+global+report+on+surveillance&btnG=#d=gs_cit&t=1671178189963&u=%2Fscholar%3Fq%3Dinfo%3Ani4nP-tGNAsJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
  • Centers for Disease Control and Prevention. Office of infectious disease antibiotic resistance threats in the United States, 2013. Atlanta: Centers for Disease Control Prevention; 2013.
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics. 2015;40:277.
  • Viswanathan V. Off-label abuse of antibiotics by bacteria. Gut Microbes. 2014;5(1):3–22. doi:10.4161/gmic.28027.
  • Kåhrström CT. Entering a post-antibiotic era? Nature Reviews. Microbiology. 2013;11(3):146. doi:10.1038/nrmicro2978.
  • Lown M, McKeown S, Stuart B, Francis N, Santer M, Lewith G, Su F, Moore M, Little P. Prescribing of long-term antibiotics to adolescents in primary care: a retrospective cohort study. British Journal of General Practice. 2021;71(713):e887–e94. doi:10.3399/BJGP.2021.0332.
  • Guarner F, Malagelada J-R. Gut flora in health and disease. The Lancet. 2003;361(9356):512–519. doi:10.1016/S0140-6736(03)12489-0.
  • Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as major disruptors of gut microbiota. Frontiers in cellular infection microbiology. Frontiers in Cellular and Infection Microbiology. 2020;10:572912. doi:10.3389/fcimb.2020.572912.
  • Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE, Mekalanos J. Evidence of extensive DNA transfer between bacteroidales species within the human gut. MBio. 2014;5(3):e01305–14. doi:10.1128/mBio.01305-14.
  • Salyers AA. Antibiotic resistance transfer in the mammalian intestinal tract: implications for human health, food safety and biotechnology. Berlin, Heidelberg: Springer; 1995. Jointly published with R.G. Landes, Biomedical Publishers, Austin, USA.
  • Sommer MO, Dantas G, Church GM. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science. 2009;325(5944):1128–1131. doi:10.1126/science.1176950.
  • Van Schaik W. The human gut resistome. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370(1670):20140087. doi:10.1098/rstb.2014.0087.
  • Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences. 2011;108:4554–4561. doi:10.1073/pnas.1000087107.
  • Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(11):3216–3223. doi:10.1099/mic.0.040618-0.
  • Korry BJ, Cabral DJ, Belenky P. Metatranscriptomics reveals antibiotic-induced resistance gene expression in the murine gut microbiota. Front Microbiol. 2020;11:322. doi:10.3389/fmicb.2020.00322.
  • Pérez-Cobas AE, Artacho A, Knecht H, Ferrús ML, Friedrichs A, Ott SJ, Moya A, Latorre A, Gosalbes MJ . Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PloS one. 2013;8(11):e80201. doi:10.1371/journal.pone.0080201.
  • Raymond F, Ouameur AA, Déraspe M, Iqbal N, Gingras H, Dridi B, Leprohon P, Plante PL, Giroux R, Bérubé È. The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME J. 2016;10(3):707–720. doi:10.1038/ismej.2015.148.
  • Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest. 2014;124(10):4212–4218. doi:10.1172/JCI72333.
  • Panda S, El Khader I, Casellas F, Lopez Vivancos J, Garcia Cors M, Santiago A, Cuenca S, Guarner F, Manichanh C . Short-term effect of antibiotics on human gut microbiota. PloS one. 2014;9(4):e95476. doi:10.1371/journal.pone.0095476.
  • Anthony WE, Wang B, Sukhum KV, D’Souza AW, Hink T, Cass C, Seiler S, Reske KA, Coon C, Dubberke ER, et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 2022;39(2):110649. doi:10.1016/j.celrep.2022.110649.
  • Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin KH, Nielsen T, Hansen TH, Liang S, Feng Q, Zhang C, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature Microbiology. 2018;3(11):1255–1265. doi:10.1038/s41564-018-0257-9.
  • Doan T, Worden L, Hinterwirth A, Arzika AM, Maliki R, Abdou A, Zhong L, Chen C, Cook C, Lebas E, et al. Macrolide and nonmacrolide resistance with mass azithromycin distribution. New England Journal of Medicine. 2020;383(20):1941–1950. doi:10.1056/NEJMoa2002606.
  • Murray AK, Zhang L, Snape J, Gaze WH. Comparing the selective and co-selective effects of different antimicrobials in bacterial communities. Int J Antimicrob Agents. 2019;53(6):767–773. doi:10.1016/j.ijantimicag.2019.03.001.
  • Lopatkin AJ, Sysoeva TA, You L. Dissecting the effects of antibiotics on horizontal gene transfer: analysis suggests a critical role of selection dynamics. Bioessays. 2016;38(12):1283–1292. doi:10.1002/bies.201600133.
  • Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L, Ratner AJ. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PloS one. 2010;5(3):e9836. doi:10.1371/journal.pone.0009836.
  • Koo H, Hakim JA, Crossman DK, Kumar R, Lefkowitz EJ, Morrow CD. Individualized recovery of gut microbial strains post antibiotics. NPJ Biofilms and Microbiomes. 2019;5(1):1–6. doi:10.1038/s41522-019-0103-8.
  • Lavelle A, Hoffmann TW, Pham H-P, Langella P, Guédon E, Sokol H. Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host. Microbiome. 2019;7(1):1–13. doi:10.1186/s40168-019-0725-3.
  • Centers for Disease Control and Prevention. Centers for Disease Control and Prevention. Atlanta (GA, USA): Outpatient antibiotic prescriptions—United States, 2014. CDC; 2018.
  • Elvers KT, Wilson VJ, Hammond A, Duncan L, Huntley AL, Hay AD, Van Der Werf, ET . Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ open. 2020;10(9):e035677. doi:10.1136/bmjopen-2019-035677.
  • Pallav K, Dowd SE, Villafuerte J, Yang X, Kabbani T, Hansen J, Dennis M, Leffler DA, Newburg DS, Kelly CP, et al. Effects of polysaccharopeptide from Trametes Versicolor and amoxicillin on the gut microbiome of healthy volunteers. Gut Microbes. 2014;5(4):458–467. doi:10.4161/gmic.29558.
  • Zaura E, Brandt BW, Teixeira de Mattos MJ, Buijs MJ, Caspers MP, Rashid MU, Weintraub A, Nord CE, Savell A, Hu Y. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio. 2015;6(6):e01693–15. doi:10.1128/mBio.01693-15.
  • Dethlefsen L, Huse S, Sogin ML, Relman DAJ, Eisen JA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6(11):e280. doi:10.1371/journal.pbio.0060280.
  • Albert HB, Kjaer P, Jensen TS, Sorensen JS, Bendix T, Manniche C. Modic changes, possible causes and relation to low back pain. Med Hypotheses. 2008;70(2):361–368. doi:10.1016/j.mehy.2007.05.014.
  • Bråten LCH, Rolfsen MP, Espeland A, Wigemyr M, Aßmus J, Froholdt A, Haugen AJ, Marchand GH, Kristoffersen PM, Lutro O, et al. Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial. BMJ. 2019;367. doi:10.1136/bmj.l5654
  • Storheim K, Espeland A, Grøvle L, Skouen JS, Aßmus J, Anke A, Froholdt A, Pedersen LM, Haugen AJ, Fors T, et al. Antibiotic treatment In patients with chronic low back pain and Modic changes (the AIM study): study protocol for a randomised controlled trial. Trials. 2017;18(1):1–11. doi:10.1186/s13063-017-2306-8.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923.
  • Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge (United Kingdom): Babraham Bioinformatics, Babraham Institute; 2010.
  • Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi P, Scholz M, Thomas AM, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021;10:e65088. doi:10.7554/eLife.65088.
  • Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu S, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–D25. doi:10.1093/nar/gkz935.
  • D’Souza AW, Boolchandani M, Patel S, Galazzo G, van Hattem JM, Arcilla MS, Melles DC, de Jong MD, Schultsz C, Bootsma MCJ, et al. Destination shapes antibiotic resistance gene acquisitions, abundance increases, and diversity changes in Dutch travelers. Genome Med. 2021;13(1):1–21. doi:10.1186/s13073-021-00893-z.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352.
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi:10.1093/bioinformatics/btq033.
  • Boolchandani M, Patel S, Dantas G. Functional metagenomics to study antibiotic resistance. Antibiotics: Springer; 2017. 307–329.
  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27(5):824–834. doi:10.1101/gr.213959.116.
  • Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–1075. doi:10.1093/bioinformatics/btt086.
  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11(1):1–11. doi:10.1186/1471-2105-11-119.
  • Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy. 2020;75(12):3491–3500. doi:10.1093/jac/dkaa345.
  • Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, Tyson GH, Zhao S, Hsu C-H, McDermott PF, et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrobial Agents Chemotherapy. 2019;63(11):e00483–19. doi:10.1128/AAC.00483-19.
  • Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 2015;9(1):207–216. doi:10.1038/ismej.2014.106.
  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152. doi:10.1093/bioinformatics/bts565.
  • Gasparrini AJ, Wang B, Sun X, Kennedy EA, Hernandez-Leyva A, Ndao IM, Tarr PI, Warner BB, Dantas G. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nature Microbiology. 2019;4(12):2285–2297. doi:10.1038/s41564-019-0550-2.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):1–18. doi:10.1186/gb-2011-12-6-r60.
  • Pulipati P, Sarkar P, Jakkampudi A, Kaila V, Sarkar S, Unnisa M, Reddy DN, Khan M, Talukdar R. The Indian gut microbiota—Is it unique? Indian Journal of Gastroenterology. 2020;39(2):133–140. doi:10.1007/s12664-020-01037-8.
  • Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, Leeming E, Gibson R, Le Roy C, Khatib HA. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27(2):321–332. doi:10.1038/s41591-020-01183-8.
  • Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, Wang X, Yang C, Li Q, Yan X. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome. 2021;9(1):1–20. doi:10.1186/s40168-021-01078-x.
  • Crits-Christoph A, Hallowell HA, Koutouvalis K, Suez J. Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes. 2022;14(1):2055944. doi:10.1080/19490976.2022.2055944.
  • Shoemaker N, Vlamakis H, Hayes K, Salyers A. Evidence for extensive resistance gene transfer among bacteroides spp. and among bacteroides and other genera in the human colon. Applied Environmental Microbiology. 2001;67(2):561–568. doi:10.1128/AEM.67.2.561-568.2001.
  • Yan W, Hall AB, Jiang X. Bacteroidales species in the human gut are a reservoir of antibiotic resistance genes regulated by invertible promoters. npj Biofilms and Microbiomes. NPJ Biofilms and Microbiomes. 2022;8(1):1–9. doi:10.1038/s41522-021-00260-1.
  • Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509(7502):612–616. doi:10.1038/nature13377.
  • Ladirat SE, Schoterman MH, Rahaoui H, Mars M, Schuren FHJ, Gruppen H, Nauta A, Schols HA . Exploring the effects of galacto-oligosaccharides on the gut microbiota of healthy adults receiving amoxicillin treatment. British Journal of Nutrition. 2014;112(4):536–546. doi:10.1017/S0007114514001135.
  • Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593–621. doi:10.1128/CMR.00008-07.
  • MacPherson CW, Mathieu O, Tremblay J, Champagne J, Nantel A, Girard SA, Tompkins TA . Gut bacterial microbiota and its resistome rapidly recover to basal state levels after short-term amoxicillin-clavulanic acid treatment in healthy adults. Sci Rep. 2018;8(1):1–14. doi:10.1038/s41598-018-29229-5.
  • Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848. doi:10.1016/j.cell.2006.02.017.
  • Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Frontiers in microbiology. Frontiers in Microbiology. 2016;7:455. doi:10.3389/fmicb.2016.00455.
  • Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A, Bork P. Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 2013;23(7):1163–1169. doi:10.1101/gr.155465.113.
  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. doi:10.1038/nature07540.
  • Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. doi:10.1126/science.1237439.
  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. doi:10.1038/nature11550.
  • Mullany P. Functional metagenomics for the investigation of antibiotic resistance. Virulence. 2014;5(3):443–447. doi:10.4161/viru.28196.