5,195
Views
5
CrossRef citations to date
0
Altmetric
Review

In vitro and ex vivo modeling of enteric bacterial infections

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2158034 | Received 25 Oct 2022, Accepted 07 Dec 2022, Published online: 28 Dec 2022

References

  • Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–26. doi:10.1111/imr.12567.
  • Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–690. doi:10.1038/ni.2608.
  • Rogers AWL, Tsolis RM, Bäumler AJ. Salmonella versus the microbiome. Microbiol Mol Biol R. 2020;85:e00027–19.
  • Steele MI, Motta EVS, Gattu T, Martinez D, Moran NA. The gut microbiota protects bees from invasion by a bacterial pathogen. Microbiol Spectr. 2021;9(2):e00394–21. doi:10.1128/Spectrum.00394-21.
  • Yurist-Doutsch S, Arrieta M-C, Vogt SL, Finlay BB. Gastrointestinal microbiota–mediated control of enteric pathogens. Annu Rev Genet. 2014;48(1):1–22. doi:10.1146/annurev-genet-120213-092421.
  • Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science. 2021;371(6536). doi:10.1126/science.abc4552.
  • Luca FD, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195(1):74–85. doi:10.1111/cei.13158.
  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. doi:10.1038/s41579-020-0433-9.
  • Nikolova VL, Smith MRB, Hall LJ, Cleare AJ, Stone JM, Young AH. Perturbations in gut microbiota composition in psychiatric disorders. JAMA Psychiatry. 2021;78(12):1343–1354. doi:10.1001/jamapsychiatry.2021.2573.
  • Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutrition. 2011;141(5):769–776. doi:10.3945/jn.110.135657.
  • Allaire JM, Crowley SM, Law HT, Chang S-Y, Ko H-J, Vallance BA. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 2018;39(9):677–696. doi:10.1016/j.it.2018.04.002.
  • Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. Gut microbiota and immune system interactions. Microorganisms. 2020;8(10):1587. doi:10.3390/microorganisms8101587.
  • Hansson GC. Mucins and the microbiome. Annu Rev Biochem. 2020;89(1):1–25. doi:10.1146/annurev-biochem-011520-105053.
  • Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin W-B, Guo C-J, Violante S, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581(7809):475–479. doi:10.1038/s41586-020-2193-0.
  • Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta. 2009;1788(4):832–841. doi:10.1016/j.bbamem.2008.10.028.
  • Paradis T, Bègue H, Basmaciyan L, Dalle F, Bon F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int J Mol Sci. 2021;22(5):2506. doi:10.3390/ijms22052506.
  • Engevik MA, Yacyshyn MB, Engevik KA, Wang J, Darien B, Hassett DJ, Yacyshyn BR, Worrell RT. Human Clostridium difficile infection: altered mucus production and composition. Am J Physiol Gastrointest Liver Physiol. 2015;308(6):G510–G524. doi:10.1152/ajpgi.00091.2014.
  • Hill DR, Huang S, Nagy MS, Yadagiri VK, Fields C, Mukherjee D, Bons B, Dedhia PH, Chin AM, Tsai Y-H, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife. 2017;6:237ra65. doi:10.7554/eLife.29132.
  • Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol. 2018;16(1):32–46. doi:10.1038/nrmicro.2017.126.
  • Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, Goldman S, Wultańska D, Garlicki A, Biesiada G, et al. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis. 2019;38(7):1211–1221. doi:10.1007/s10096-019-03539-6.
  • Shoaib M, Shehzad A, Raza H, Niazi S, Khan IM, Akhtar W, Safdar W, Wang Z. A comprehensive review on the prevalence, pathogenesis and detection of Yersinia enterocolitica. RSC Adv. 2019;9(70):41010–41021. doi:10.1039/C9RA06988G.
  • Fernández-Bravo A, Figueras MJ. An update on the genus aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms. 2020;8(1):129. doi:10.3390/microorganisms8010129.
  • Scherer WF, Syverton JT. Studies on the propagation in vitro of poliomyelitis viruses. III. The propagation of poliomyelitis viruses in tissue cultures devoid of nerve cells. J Exp Med. 1952;96(4):389–400. doi:10.1084/jem.96.4.389.
  • Kaneko M, Emoto Y, Emoto MA. Simple reproducible inexpensive, yet old-fashioned method for determining phagocytic and bactericidal activities of macrophages. Yonsei Med J. 2016;57(2):283–290. doi:10.3349/ymj.2016.57.2.283.
  • Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96(2):736–749. doi:10.1016/S0016-5085(89)80072-1.
  • Youhanna S, Lauschke VM. The past, present and future of intestinal in vitro cell systems for drug absorption studies. J Pharm Sci. 2021;110(1):50–65. doi:10.1016/j.xphs.2020.07.001.
  • Shen JX, Youhanna S, Shafagh RZ, Kele J, Lauschke VM. Organotypic and microphysiological models of liver, gut, and kidney for studies of drug metabolism, pharmacokinetics, and toxicity. Chem Res Toxicol. 2020;33(1):38–60. doi:10.1021/acs.chemrestox.9b00245.
  • Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, et al. Organotypic and microphysiological human tissue models for drug discovery and development—current state-of-the-art and future perspectives. Pharmacol Rev. 2022;74(1):141–206. doi:10.1124/pharmrev.120.000238.
  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1–26. doi:10.1007/s10565-005-0085-6.
  • Gullberg E, Leonard M, Karlsson J, Hopkins AM, Brayden D, Baird AW, Artursson P. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun. 2000;279(3):808–813. doi:10.1006/bbrc.2000.4038.
  • Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A, Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA, Li H. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci Rep. 2018;8(1):2871–14. doi:10.1038/s41598-018-21201-7.
  • Takahashi Y, Noguchi M, Inoue Y, Sato S, Shimizu M, Kojima H, Okabe T, Kiyono H, Yamauchi Y, Sato R. Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies. IScience. 2022;25(7):104542. doi:10.1016/j.isci.2022.104542.
  • Price AE, Shamardani K, Lugo KA, Deguine J, Roberts AW, Lee BL, Barton GM. A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity. 2018;49(3):560–575.e6. doi:10.1016/j.immuni.2018.07.016.
  • Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, Akakura R, Yoshida M, Kawalec M, Reichhart J-M, et al. The shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe. 2013;13(5):570–583. doi:10.1016/j.chom.2013.04.012.
  • Knodler LA, Crowley S, Sham H, Yang H, Wrande M, Ma C, Ernst R, Steele-Mortimer O, Celli J, Vallance B, et al. Noncanonical inflammasome activation of Caspase-4/Caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe. 2014;16(2):249–256. doi:10.1016/j.chom.2014.07.002.
  • Kozuka K, He Y, Koo-McCoy S, Kumaraswamy P, Nie B, Shaw K, Chan P, Leadbetter M, He L, Lewis JG, et al. Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Reports. 2017;9(6):1976–1990. doi:10.1016/j.stemcr.2017.10.013.
  • VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C, Tarr PI, Ciorba MA, Stappenbeck TS. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut. 2015;64(6):911–920. doi:10.1136/gutjnl-2013-306651.
  • Pontier C, Pachot J, Botham R, Lenfant B, Arnaud P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci. 2001;90(10):1608–1619. doi:10.1002/jps.1111.
  • Bazes A, Nollevaux G, Coco R, Joly A, Sergent T, Schneider Y-J. Development of a triculture based system for improved benefit/risk assessment in pharmacology and human food. BMC Proc. 2011;5(8):67. doi:10.1186/1753-6561-5-S8-P67.
  • Antunes F, Andrade F, Araújo F, Ferreira D, Sarmento B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm. 2013;83(3):427–435. doi:10.1016/j.ejpb.2012.10.003.
  • Lamprokostopoulou A, Römling U. Yin and yang of biofilm formation and Cyclic di-GMP signaling of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium. J Innate Immun. 2021;14(4):275–292. doi:10.1159/000519573.
  • Polzin S, Huber C, Eylert E, Elsenhans I, Eisenreich W, Schmidt H. Growth media simulating ileal and colonic environments affect the intracellular proteome and carbon fluxes of enterohemorrhagic Escherichia coli O157:H7 Strain EDL933. Appl Environ Microb. 2013;79(12):3703–3715. doi:10.1128/AEM.00062-13.
  • Karaolis DKR, Means TK, Yang D, Takahashi M, Yoshimura T, Muraille E, Philpott D, Schroeder JT, Hyodo M, Hayakawa Y, et al. Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol. 2007;178(4):2171–2181. doi:10.4049/jimmunol.178.4.2171.
  • Lamprokostopoulou A, Monteiro C, Rhen M, Römling U. Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ Microbiol. 2010;12(1):40–53. doi:10.1111/j.1462-2920.2009.02032.x.
  • Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 2013;77:1–52.
  • Dey AK, Bhagat A, Chowdhury R. Host cell contact induces expression of virulence factors and VieA, a Cyclic di-GMP phosphodiesterase, in vibrio cholerae. J Bacteriol. 2013;195(9):2004–2010. doi:10.1128/JB.02127-12.
  • Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol. 2015;194(9):4081–4087. doi:10.4049/jimmunol.1403169.
  • Ducarmon QR, Zwittink RD, Hornung BV, Van Schaik W, Young VB, Kuijper EJ. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol R. 2019;83(3):e00007–e000019.
  • Samuels AN, Roggiani M, Smith KA, Zhu J, Goulian M, Kohli RM. Deciphering the role of colicins during colonization of the mammalian gut by Commensal E. coli. Microorganisms. 2020;8(5):664. doi:10.3390/microorganisms8050664.
  • Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun. 2008;76(3):1143–1152. doi:10.1128/IAI.01386-07.
  • Frederick A, Huang Y, Pu M, Rowe-Magnus DA. Vibrio cholerae Type VI activity alters motility behavior in mucin. J Bacteriol. 2020;202(24). doi:10.1128/JB.00261-20.
  • Joshi A, Kostiuk B, Rogers A, Teschler J, Pukatzki S, Yildiz FH. Rules of engagement: the Type VI secretion system in vibrio cholerae. Trends Microbiol. 2017;25(4):267–279. doi:10.1016/j.tim.2016.12.003.
  • Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA. 2006;103(5):1528–1533. doi:10.1073/pnas.0510322103.
  • Bachmann V, Kostiuk B, Unterweger D, Diaz-Satizabal L, Ogg S, Pukatzki S. Bile salts modulate the mucin-activated type VI secretion system of pandemic vibrio cholerae. PLoS Neglect Trop Dis. 2015;9(8):e0004031. doi:10.1371/journal.pntd.0004031.
  • Serapio-Palacios A, Woodward SE, Vogt SL, Deng W, Creus-Cuadros A, Huus KE, Cirstea M, Gerrie M, Barcik W, Yu H, Finlay BB. Type VI secretion systems of pathogenic and commensal bacteria mediate niche occupancy in the gut. Cell Rep. 2022;39(4):110731. doi:10.1016/j.celrep.2022.110731.
  • Sokaribo AS, Balezantis LR, MacKenzie KD, Wang Y, Palmer MB, Chung B, Herman NJ, McCarthy MC, Chen JM, White AP, et al. A SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 leads to increased in vivo fitness of invasive salmonella strains. Infect Immun. 2021;89(4):e00810–20. doi:10.1128/IAI.00810-20.
  • Rey C, Chang -Y-Y, Latour-Lambert P, Varet H, Proux C, Legendre R, Coppée J-Y, Enninga J. Transcytosis subversion by M cell-to-enterocyte spread promotes Shigella flexneri and Listeria monocytogenes intracellular bacterial dissemination. PLoS Pathog. 2020;16(4):e1008446. doi:10.1371/journal.ppat.1008446.
  • Labrec EH, Schneider H, Magnani TJ, Formal SB. Epithelial cell penetration as as essential step in the pathogenesis of bacillary dysentery. J Bacteriol. 1964;88(5):1503–1518. doi:10.1128/jb.88.5.1503-1518.1964.
  • Gemski P, Takeuchi A, Washington O, Formal SB. Shigellosis due to shigella dysenteriae 1: relative importance of mucosal invasion versus toxin production in pathogenesis. J Infect Dis. 1972;126(5):523–530. doi:10.1093/infdis/126.5.523.
  • Lampel KA, Formal† SB, Maurelli AT, Kaper J. A brief history of shigella. EcoSal Plus. 2018;8(1). doi:10.1128/ecosalplus.ESP-0006-2017.
  • Sansonetti PJ, Kopecko DJ, Formal SB. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun. 1982;35(3):852–860. doi:10.1128/iai.35.3.852-860.1982.
  • Maurelli AT, Baudry B, d’Hauteville H, Hale TL, Sansonetti PJ. Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella flexneri. Infect Immun. 1985;49(1):164–171. doi:10.1128/iai.49.1.164-171.1985.
  • Clerc P, Ryter A, Mounier J, Sansonetti PJ. Plasmid-mediated intracellular multiplication of Shigella flexneri. Ann Inst Pasteur Microbiol. 1986;137:315–320.
  • Sansonetti PJ, Ryter A, Clerc P, Maurelli AT, Mounier J. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun. 1986;51(2):461–469. doi:10.1128/iai.51.2.461-469.1986.
  • Clerc PL, Ryter A, Mounier J, Sansonetti PJ. Plasmid-mediated early killing of eucaryotic cells by Shigella flexneri as studied by infection of J774 macrophages. Infect Immun. 1987;55(3):521–527. doi:10.1128/iai.55.3.521-527.1987.
  • Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA. 1989;86(10):3867–3871. doi:10.1073/pnas.86.10.3867.
  • Westermann AJ, Förstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Müller L, Reinhardt R, Stadler PF, Vogel J, et al. Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature. 2016;529(7587):496–501. doi:10.1038/nature16547.
  • Chang S-J, Hsu Y-T, Chen Y, Lin -Y-Y, Lara-Tejero M, Galan JE. Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. Elife. 2022;11:e78561. doi:10.7554/eLife.78561.
  • Sheahan K-L, Isberg RR, Miller JF. Identification of mammalian proteins that collaborate with type iii secretion system function: involvement of a chemokine receptor in supporting translocon activity. mBio. 2015;6(1):e02023–14. doi:10.1128/mBio.02023-14.
  • Suzuki S, Mimuro H, Kim M, Ogawa M, Ashida H, Toyotome T, Franchi L, Suzuki M, Sanada T, Suzuki T, Tsutsui H. Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc Natl Acad Sci USA. 2014;111(40):E4254–E4263. doi:10.1073/pnas.1324021111.
  • Li P, Jiang W, Yu Q, Liu W, Zhou P, Li J, Xu J, Xu B, Wang F, Shao F, et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature. 2017;551(7680):378–383. doi:10.1038/nature24467.
  • Mattock E, Blocker AJ. How do the virulence factors of shigella work together to cause disease? Front Cell Infect Microbiol. 2017;7:64. doi:10.3389/fcimb.2017.00064.
  • Agaisse H. Molecular and cellular mechanisms of shigella flexneri dissemination. Front Cell Infect Microbiol. 2016;6:29. doi:10.3389/fcimb.2016.00029.
  • Köseoğlu VK, Agaisse H, Freitag NE. Evolutionary perspectives on the moonlighting functions of bacterial factors that support actin-based motility. mBio. 2019;10(4):e01520–19. doi:10.1128/mBio.01520-19.
  • Qin J, Hong Y, Morona R, Totsika M. Cysteine-dependent conformational heterogeneity of shigella flexneri autotransporter IcsA and implications of its function. Microbiol Spectr. 2022:e03410–22. doi:10.1128/spectrum.03410-22.
  • Duncan-Lowey JK, Wiscovitch AL, Wood TE, Goldberg MB, Russo BC. Shigella flexneri disruption of cellular tension promotes intercellular spread. Cell Rep. 2020;33(8):108409. doi:10.1016/j.celrep.2020.108409.
  • Campbell-Valois F-X, Sachse M, Sansonetti PJ, Parsot C. Escape of actively secreting shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. mBio. 2015;6:e02567–14.
  • Wen SC, Best E, Nourse C. Non-typhoidal Salmonella infections in children: review of literature and recommendations for management. J Paediatr Child Health. 2017;53(10):936–941. doi:10.1111/jpc.13585.
  • Gordon MA. Salmonella infections in immunocompromised adults. J Infection. 2008;56(6):413–422. doi:10.1016/j.jinf.2008.03.012.
  • Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D, Clarke L, Whitehead S, Sangal V, et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19(12):2279–2287. doi:10.1101/gr.091017.109.
  • Jong HKD, Parry CM, Poll TVD, Wiersinga WJ, Chitnis CE. Host–pathogen interaction in invasive salmonellosis. PLoS Pathog. 2012;8(10):e1002933. doi:10.1371/journal.ppat.1002933.
  • Rivera-Chávez F, Winter SE, Lopez CA, Xavier MN, Winter MG, Nuccio S-P, Russell JM, Laughlin RC, Lawhon SD, Sterzenbach T, et al. Salmonella uses energy taxis to benefit from intestinal inflammation. PLoS Pathog. 2013;9(4):e1003267. doi:10.1371/journal.ppat.1003267.
  • Faber F, Thiennimitr P, Spiga L, Byndloss MX, Litvak Y, Lawhon S, Andrews-Polymenis HL, Winter SE, Bäumler AJ. Respiration of microbiota-derived 1,2-propanediol drives salmonella expansion during colitis. PLoS Pathog. 2017;13(1):e1006129. doi:10.1371/journal.ppat.1006129.
  • Anderson CJ, Medina CB, Barron BJ, Karvelyte L, Aaes TL, Lambertz I, Perry JSA, Mehrotra P, Gonçalves A, Lemeire K, et al. Microbes exploit death-induced nutrient release by gut epithelial cells. Nature. 2021;596(7871):262–267. doi:10.1038/s41586-021-03785-9.
  • Schlumberger MC, Müller AJ, Ehrbar K, Winnen B, Duss I, Stecher B, Hardt W-D. Real-time imaging of type III secretion: salmonella SipA injection into host cells. Proc Natl Acad Sci USA. 2005;102(35):12548–12553. doi:10.1073/pnas.0503407102.
  • Fulde M, van Vorst K, Zhang K, Westermann AJ, Busche T, Huei YC, Welitschanski K, Froh I, Pägelow D, Plendl J, et al. SPI2 T3SS effectors facilitate enterocyte apical to basolateral transmigration of Salmonella -containing vacuoles in vivo. Gut Microbes. 2021;13(1):1973836. doi:10.1080/19490976.2021.1973836.
  • Otten EG, Werner E, Crespillo-Casado A, Boyle KB, Dharamdasani V, Pathe C, Santhanam B, Randow F. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature. 2021;594(7861):111–116. doi:10.1038/s41586-021-03566-4.
  • Galán JE, Curtiss R. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA. 1989;86(16):6383–6387. doi:10.1073/pnas.86.16.6383.
  • Bäumler AJ, Tsolis RM, Heffron F. Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect Immun. 1996;64(5):1862–1865. doi:10.1128/iai.64.5.1862-1865.1996.
  • Gewirtz AT, Simon PO, Schmitt CK, Taylor LJ, Hagedorn CH, O’Brien AD, Neish AS, Madara JL. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest. 2001;107(1):99–109. doi:10.1172/JCI10501.
  • Monack DM, Bouley DM, Falkow S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J Exp Med. 2004;199(2):231–241. doi:10.1084/jem.20031319.
  • Saliba A-E, Westermann AJ, Appenzeller S, Stapels DA, Schulte LN, Helaine S, Vogel J. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat Microbiol. 2016;2(2]):16206. doi:10.1038/nmicrobiol.2016.206.
  • Pontes MH, Lee E-J, Choi J, Groisman EA. Salmonella promotes virulence by repressing cellulose production. Proc Natl Acad Sci USA. 2015;112(16):5183–5188. doi:10.1073/pnas.1500989112.
  • Petersen E, Mills E, Miller SI. Cyclic-di-GMP regulation promotes survival of a slow-replicating subpopulation of intracellular Salmonella Typhimurium. Proc Natl Acad Sci USA. 2019;116:6335–6340.
  • Ahmad I, Lamprokostopoulou A, Le Guyon S, Streck E, Barthel M, Peters V, Hardt WD, Römling U. Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in salmonella enterica serovar typhimurium. PLoS One. 2011;6(12):e28351. doi:10.1371/journal.pone.0028351.
  • Stapels DAC, Hill PWS, Westermann AJ, Fisher RA, Thurston TL, Saliba A-E, Blommestein I, Vogel J, Helaine S. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science. 2018;362(6419):1156–1160. doi:10.1126/science.aat7148.
  • Eng S-K, Pusparajah P, Ab Mutalib N-S, Ser H-L, Chan K-G, Lee L-H. Salmonella : a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci. 2015;8(3):284–293. doi:10.1080/21553769.2015.1051243.
  • Hirose K, Ezaki T, Miyake M, Li T, Khan AQ, Kawamura Y, Yokoyama H, Takami T. Survival of Vi‐capsulated and Vi‐deleted Salmonella typhi strains in cultured macrophage expressing different levels of CD14 antigen. FEMS Microbiol Lett. 1997;147(2):259–265. doi:10.1111/j.1574-6968.1997.tb10251.x.
  • Sharma A, Qadri A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci USA. 2004;101(50):17492–17497. doi:10.1073/pnas.0407536101.
  • Parween F, Yadav J, Qadri A. The virulence polysaccharide of salmonella typhi suppresses activation of Rho family GTPases to limit inflammatory responses from epithelial cells. Front Cell Infect Microbiol. 2019;9:141. doi:10.3389/fcimb.2019.00141.
  • Song J, Gao X, Galán JE. Structure and function of the Salmonella Typhi chimaeric A2B5 typhoid toxin. Nature. 2013;499(7458):350–354. doi:10.1038/nature12377.
  • Grasso F, Frisan T. Bacterial genotoxins: merging the DNA damage response into infection biology. Biomolecules. 2015;5(3):1762–1782. doi:10.3390/biom5031762.
  • Kanungo S, Azman AS, Ramamurthy T, Deen J, Dutta S. Cholera. Lancet. 2022;399(10333):1429–1440. doi:10.1016/S0140-6736(22)00330-0.
  • Sengupta C, Mukherjee O, Chowdhury R. Adherence to intestinal cells promotes biofilm formation in vibrio cholerae. J Infect Dis. 2016;214(10):1571–1578. doi:10.1093/infdis/jiw435.
  • Schluter J, Nadell CD, Bassler BL, Foster KR. Adhesion as a weapon in microbial competition. ISME J. 2015;9(1):139–149. doi:10.1038/ismej.2014.174.
  • Valiente E, Davies C, Mills DC, Getino M, Ritchie JM, Wren BW. Vibrio cholerae accessory colonisation factor AcfC: a chemotactic protein with a role in hyperinfectivity. Sci Rep. 2018;8(1):8390. doi:10.1038/s41598-018-26570-7.
  • Grognot M, Mittal A, Mah’moud M, Taute KM, Alexandre G. Vibrio cholerae motility in aquatic and mucus-mimicking environments. Appl Environ Microbiol. 2021;87(20):e01293–21. doi:10.1128/AEM.01293-21.
  • Alst AJV, DiRita VJ. Aerobic metabolism in vibrio cholerae is required for population expansion during infection. mBio. 2020;11(5):e01989–20. doi:10.1128/mBio.01989-20.
  • Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK, Chatterjee NS. Intestinal adherence of vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun. 2008;76(11):4968–4977. doi:10.1128/IAI.01615-07.
  • Ghasemi M, Bakhshi B, Khashei R, Soudi S. Modulatory effect of Vibrio cholerae toxin co-regulated pilus on mucins, toll-like receptors and NOD genes expression in co-culture model of Caco-2 and peripheral blood mononuclear cells (PBMC). Microb Pathog. 2020;149:104566. doi:10.1016/j.micpath.2020.104566.
  • Ghasemi M, Bakhshi B, Khashei R, Soudi S, Boustanshenas M. Vibrio cholerae toxin coregulated pilus provokes inflammatory responses in Coculture model of Caco-2 and peripheral blood mononuclear cells (PBMC) leading to increased colonization. Microbiol Immunol. 2021;65(6):238–244. doi:10.1111/1348-0421.12889.
  • Kaisar MH, Bhuiyan MS, Akter A, Saleem D, Iyer AS, Dash P, Hakim A, Chowdhury F, Khan AI, Calderwood SB, et al. Vibrio cholerae Sialidase-specific immune responses are associated with protection against cholera. mSphere. 2021;6(2):e01232–20. doi:10.1128/mSphere.01232-20.
  • Detzner J, Püttmann C, Pohlentz G, Müthing J. Ingenious action of vibrio cholerae neuraminidase recruiting additional GM1 cholera toxin receptors for primary human colon epithelial cells. Microorganisms. 2022;10(6):1255. doi:10.3390/microorganisms10061255.
  • Zingl FG, Thapa HB, Scharf M, Kohl P, Müller AM, Schild S. Outer membrane vesicles of vibrio cholerae protect and deliver active cholera toxin to host cells via porin-dependent uptake. mBio. 2021;12(3):e00534–21. doi:10.1128/mBio.00534-21.
  • Sánchez J, Holmgren J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci. 2008;65(9):1347–1360. doi:10.1007/s00018-008-7496-5.
  • Guichard A, Cruz-Moreno B, Aguilar B, Van sorge N, Kuang J, Kurkciyan A, Wang Z, Hang S, Pineton de chambrun G, McCole D, et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe. 2013;14(3):294–305. doi:10.1016/j.chom.2013.08.001.
  • Blount ZD. The unexhausted potential of E. coli. Elife. 2015;4:e05826. doi:10.7554/eLife.05826.
  • Vatanen T, Kostic A, d’Hennezel E, Siljander H, Franzosa E, Yassour M, Kolde R, Vlamakis H, Arthur T, Hämäläinen A-M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842–853. doi:10.1016/j.cell.2016.04.007.
  • Krall LJ, Klein S, Boutin S, Wu CC, Sähr A, Stanifer ML, Boulant S, Heeg K, Nurjadi D, Hildebrand D, et al. Invasiveness of Escherichia coli is associated with an IncFII plasmid. Pathogens. 2021;10(12):1645. doi:10.3390/pathogens10121645.
  • Qiu J, Nie Y, Zhao Y, Zhang Y, Li L, Wang R, Wang M, Chen S, Wang J, Li Y-Q, et al. Safeguarding intestine cells against enteropathogenic Escherichia coli by intracellular protein reaction, a preventive antibacterial mechanism. Proc Natl Acad Sci USA. 2020;117(10):5260–5268. doi:10.1073/pnas.1914567117.
  • Prudent V, Demarre G, Vazeille E, Wery M, Quenech’Du N, Ravet A, Dauverd - Girault J, van Dijk E, Bringer M-A, Descrimes M, et al. The Crohn’s disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack. Commun Biol. 2021;4(1):627. doi:10.1038/s42003-021-02161-7.
  • Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, Wu X, DeStefano Shields CE, Hechenbleikner EM, Huso DL, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–597. doi:10.1126/science.aah3648.
  • Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD, et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019;363(6428). doi:10.1126/science.aar7785.
  • Sheppard SK, Maiden MCJ. The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb Perspect Biol. 2015;7(8):a018119. doi:10.1101/cshperspect.a018119.
  • Boehm M, Hoy B, Rohde M, Tegtmeyer N, Bæk KT, Oyarzabal OA, Brøndsted L, Wessler S, Backert S. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin. Gut Pathog. 2012;4(3). doi:10.1186/1757-4749-4-3.
  • Day CJ, Tran EN, Semchenko EA, Tram G, Hartley-Tassell LE, Ng PSK, King RM, Ulanovsky R, McAtamney S, Apicella MA, et al. Glycan:glycan interactions: high affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells. Proc Natl Acad Sci USA. 2015;112(52):E7266–E7275. doi:10.1073/pnas.1421082112.
  • Freitag CM, Strijbis K, Putten JPMV. Host cell binding of the flagellar tip protein of Campylobacter jejuni. Cell Microbiol. 2017;19(6):e12714. doi:10.1111/cmi.12714.
  • Fukushima S, Shimohata T, Inoue Y, Kido J, Uebanso T, Mawatari K, Takahashi A. Recruitment of LC3 by campylobacter jejuni to bacterial invasion site on host cells via the Rac1-mediated signaling pathway. Front Cell Infect Microbiol. 2022;12:829682. doi:10.3389/fcimb.2022.829682.
  • Taylor ZW, Raushel FM. Cytidine diphosphoramidate kinase: an enzyme required for the biosynthesis of the O -methyl phosphoramidate modification in the capsular polysaccharides of Campylobacter jejuni. Biochemistry. 2018;57(15):2238–2244. doi:10.1021/acs.biochem.8b00279.
  • Zamora CY, Ward EM, Kester JC, Chen WLK, Velazquez JG, Griffith LG, Imperiali B. Application of a gut-immune co-culture system for the study of N -glycan-dependent host–pathogen interactions of Campylobacter jejuni. Glycobiology. 2020;30(6):374–381. doi:10.1093/glycob/cwz105.
  • Zheng J, Meng J, Zhao S, Singh R, Song W. Campylobacter -induced interleukin-8 secretion in polarized human intestinal epithelial cells requires campylobacter -secreted cytolethal distending toxin- and toll-like receptor-mediated activation of NF-κB. Infect Immun. 2008;76(10):4498–4508. doi:10.1128/IAI.01317-07.
  • Cao X, Lest CHAVD, Huang LZX, Putten JP, van M, Wösten MMSM. Campylobacter jejuni permeabilizes the host cell membrane by short chain lysophosphatidylethanolamines. Gut Microbes. 2022;14(1):2091371. doi:10.1080/19490976.2022.2091371.
  • Saha C, Mohanraju P, Stubbs A, Dugar G, Hoogstrate Y, Kremers G-J, van Cappellen WA, Horst-Kreft D, Laffeber C, Lebbink JHG, et al. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. Sci Adv. 2020;6(25):eaaz4849. doi:10.1126/sciadv.aaz4849.
  • Cui J, Duizer C, Bouwman LI, van Rooijen KS, Voogdt CGP, van Putten JPM, de Zoete MR. The ALPK1 pathway drives the inflammatory response to Campylobacter jejuni in human intestinal epithelial cells. PLoS Pathog. 2021;17(8):e1009787. doi:10.1371/journal.ppat.1009787.
  • Zhou P, She Y, Dong N, Li P, He H, Borio A, Wu Q, Lu S, Ding X, Cao Y, et al. Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature. 2018;561(7721):122–126. doi:10.1038/s41586-018-0433-3.
  • Pfannkuch L, Hurwitz R, Trauisen J, Sigulla J, Poeschke M, Matzner L, Kosma P, Schmid M, Meyer TF. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J. 2019;33(8):9087–9099. doi:10.1096/fj.201802555R.
  • Martin-Gallausiaux C, Garcia-Weber D, Lashermes A, Larraufie P, Marinelli L, Teixeira V, Rolland A, Béguet-Crespel F, Brochard V, Quatremare T, et al. Akkermansia muciniphil upregulates genes involved in maintaining the intestinal barrier function via ADP-heptose-dependent activation of the ALPK1/TIFA pathway. Gut Microbes. 2022;14(1):2110639. doi:10.1080/19490976.2022.2110639.
  • Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut. 2022;71(9):1892–1908. doi:10.1136/gutjnl-2021-326560.
  • Taelman J, Diaz M, Guiu J. Human intestinal organoids: promise and challenge. Front Cell Dev Biol. 2022;10:854740. doi:10.3389/fcell.2022.854740.
  • Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551(7680):333–339. doi:10.1038/nature24489.
  • Rouch JD, Scott A, Lei NY, Solorzano-Vargas RS, Wang J, Hanson EM, Kobayashi M, Lewis M, Stelzner MG, Dunn JCY, et al. Development of functional Microfold (M) cells from intestinal stem cells in primary human enteroids. PLoS One. 2016;11(1):e0148216. doi:10.1371/journal.pone.0148216.
  • Ranganathan S, Doucet M, Grassel CL, Delaine-Elias B, Zachos NC, Barry EM. Evaluating Shigella flexneri pathogenesis in the human enteroid model. Infect Immun. 2019;87(4):e00740–18. doi:10.1128/IAI.00740-18.
  • Pradhan S, Weiss AA, Barbour AG. Probiotic properties of Escherichia coli Nissle in human intestinal organoids. mBio. 2020;11(4):e01470–20. doi:10.1128/mBio.01470-20.
  • Heo I, Dutta D, Schaefer DA, Iakobachvili N, Artegiani B, Sachs N, Boonekamp KE, Bowden G, Hendrickx APA, Willems RJL, et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat Microbiol. 2018;3(7):814–823. doi:10.1038/s41564-018-0177-8.
  • Forbester JL, Lees EA, Goulding D, Forrest S, Yeung A, Speak A, Clare S, Coomber EL, Mukhopadhyay S, Kraiczy J, et al. Interleukin-22 promotes phagolysosomal fusion to induce protection against Salmonella enterica Typhimurium in human epithelial cells. Proc Natl Acad Sci USA. 2018;115(40):10118–10123. doi:10.1073/pnas.1811866115.
  • Geiser P, Di Martino ML, Samperio Ventayol P, Eriksson J, Sima E, Al-Saffar AK, Ahl D, Phillipson M, Webb D-L, Sundbom M, et al. Salmonella enterica serovar Typhimurium exploits cycling through epithelial cells to colonize human and murine enteroids. mBio. 2021;12(1):e02684–20. doi:10.1128/mBio.02684-20.
  • Williamson IA, Arnold JW, Samsa LA, Gaynor L, DiSalvo M, Cocchiaro JL, Carroll I, Azcarate-Peril MA, Rawls JF, Allbritton NL, et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell Mol Gastroenterol Hepatol. 2018;6(3):301–319. doi:10.1016/j.jcmgh.2018.05.004.
  • Co JY, Margalef-Català M, Monack DM, Amieva MR. Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nat Protoc. 2021;16(11):5171–5192. doi:10.1038/s41596-021-00607-0.
  • Co JY, Margalef-Català M, Li X, Mah AT, Kuo CJ, Monack DM, Amieva MR. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep. 2019;26(9):2509–2520.e4. doi:10.1016/j.celrep.2019.01.108.
  • Rajan A, Vela L, Zeng X-L, Yu X, Shroyer N, Blutt SE, Poole NM, Carlin LG, Nataro JP, Estes MK, et al. Novel segment- and host-specific patterns of enteroaggregative Escherichia coli adherence to human intestinal enteroids. mBio. 2018;9(1). doi:10.1128/mBio.02419-17.
  • Nickerson KP, Llanos-Chea A, Ingano L, Serena G, Miranda-Ribera A, Perlman M, Lima R, Sztein MB, Fasano A, Senger S, et al. A versatile human intestinal organoid-derived epithelial monolayer model for the study of enteric pathogens. Microbiol Spectr. 2021;9(1):e00003–21. doi:10.1128/Spectrum.00003-21.
  • Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW, Payne SM. Human intestinal enteroids as a model system of shigella pathogenesis. Infect Immun. 2019;87(4). doi:10.1128/IAI.00733-18.
  • Ventayol PS, Geiser P, Di Martino ML, Florbrant A, Fattinger SA, Walder N, Sima E, Shao F, Gekara NO, Sundbom M, et al. Bacterial detection by NAIP/NLRC4 elicits prompt contractions of intestinal epithelial cell layers. Proc Natl Acad Sci USA. 2021;118(16):e2013963118. doi:10.1073/pnas.2013963118.
  • Rijn J, van M, Grüttner J, Sundbom M, Webb D-L, Hellström PM, Svärd SG, Sellin ME. High-definition DIC imaging uncovers transient stages of pathogen infection cycles on the surface of human adult stem cell-derived intestinal epithelium. mBio. 2022;13(1):e00022–22. doi:10.1128/mbio.00022-22.
  • Fasciano AC, Dasanayake GS, Estes MK, Zachos NC, Breault DT, Isberg RR, Tan S, Mecsas J. Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes. 2021;13(1):1988390. doi:10.1080/19490976.2021.1988390.
  • Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, Neill FH, Blutt SE, Zeng X-L, Qu L, et al. Replication of human noroviruses in stem cell-derived human enteroids. Science. 2016;353(6306):1387–1393. doi:10.1126/science.aaf5211.
  • Hosmillo M, Chaudhry Y, Nayak K, Sorgeloos F, Koo B-K, Merenda A, Lillestol R, Drumright L, Zilbauer M, Goodfellow I, et al. Norovirus replication in human intestinal epithelial cells is restricted by the interferon-induced JAK/STAT signaling pathway and RNA polymerase II-mediated transcriptional responses. mBio. 2020;11(2):e00215–20. doi:10.1128/mBio.00215-20.
  • Saxena K, Blutt SE, Ettayebi K, Zeng X-L, Broughman JR, Crawford SE, Karandikar UC, Sastri NP, Conner ME, Opekun AR, et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol. 2016;90(1):43–56. doi:10.1128/JVI.01930-15.
  • RePass MAD, Chen Y, Lin Y, Zhou W, Kaplan DL, Ward HD. Novel bioengineered three-dimensional human intestinal model for long-term infection of Cryptosporidium parvum. Infect Immun. 2017;65(3): e00731–16.
  • Wilke G, Funkhouser-Jones LJ, Wang Y, Ravindran S, Wang Q, Beatty WL, Baldridge MT, VanDussen KL, Shen B, Kuhlenschmidt MS, et al. A stem-cell-derived platform enables complete cryptosporidium development in vitro and genetic tractability. Cell Host Microbe. 2019;26(1):123–134.e8. doi:10.1016/j.chom.2019.05.007.
  • Bartfeld S. Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids. Dev Biol. 2016;420(2):262–270. doi:10.1016/j.ydbio.2016.09.014.
  • Nikolaev M, Mitrofanova O, Broguiere N, Geraldo S, Dutta D, Tabata Y, Elci B, Brandenberg N, Kolotuev I, Gjorevski N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature. 2020;585(7826):574–578. doi:10.1038/s41586-020-2724-8.
  • Kim SH, Chi M, Yi B, Kim SH, Oh S, Kim Y, Park S, Sung JH. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr Biol. 2014;6(12):1122–1131. doi:10.1039/c4ib00157e.
  • Grassart A, Malardé V, Gobaa S, Sartori-Rupp A, Kerns J, Karalis K, Marteyn B, Sansonetti P, Sauvonnet N. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting shigella infection. Cell Host Microbe. 2019;26(3):435–444.e4. doi:10.1016/j.chom.2019.08.007.
  • Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA. 2016;113(1):E7–15. doi:10.1073/pnas.1522193112.
  • Konijnenburg D, van PH, Pedicord VA, Farache J, Victora GD, Mucida D. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell. 2017;171(4):783–794.e13. doi:10.1016/j.cell.2017.08.046.
  • Farache J, Koren I, Milo I, Gurevich I, Kim K-W, Zigmond E, Furtado G, Lira S, Shakhar G. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity. 2013;38(3):581–595. doi:10.1016/j.immuni.2013.01.009.
  • Garreta E, Kamm RD, Chuva de Sousa Lopes SM, Lancaster MA, Weiss R, Trepat X, Hyun I, Montserrat N. Rethinking organoid technology through bioengineering. Nat Mater. 2021;20(2):145–155. doi:10.1038/s41563-020-00804-4.
  • Pentinmikko N, Lozano R, Scharaw S, Andersson S, Englund JI, Castillo-Azofeifa D, Gallagher A, Broberg M, Song K-Y, Sola Carvajal A, et al. Cellular shape reinforces niche to stem cell signaling in the small intestine. Sci Adv. 2022;8(41):eabm1847. doi:10.1126/sciadv.abm1847.
  • Taebnia N, Zhang R, Kromann EB, Dolatshahi-Pirouz A, Andresen TL, Larsen NB. Dual-material 3D-printed intestinal model devices with integrated villi-like scaffolds. ACS Appl Mater Inter. 2021;13(49):58434–58446. doi:10.1021/acsami.1c22185.
  • Wang Y, Gunasekara DB, Reed MI, DiSalvo M, Bultman SJ, Sims CE, Magness ST, Allbritton NL. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials. 2017;128:44–55. doi:10.1016/j.biomaterials.2017.03.005.
  • McCrary MW, Bousalis D, Mobini S, Song YH, Schmidt CE. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater. 2020;111:1–19. doi:10.1016/j.actbio.2020.05.031.
  • Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Soleilhac M, Djemat A, Wu H, et al. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials. 2022;282:121380. doi:10.1016/j.biomaterials.2022.121380.
  • Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, Sharma CM. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLoS Pathog. 2020;16(2):e1008304. doi:10.1371/journal.ppat.1008304.
  • Schulte LN, Schweinlin M, Westermann AJ, Janga H, Santos SC, Appenzeller S, Walles H, Vogel J, Metzger M. An advanced human intestinal coculture model reveals compartmentalized host and pathogen strategies during salmonella infection. mBio. 2020;11(1):e03348–19. doi:10.1128/mBio.03348-19.
  • Costello CM, Hongpeng J, Shaffiey S, Yu J, Jain NK, Hackam D, March JC. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol Bioeng. 2014;111(6):1222–1232. doi:10.1002/bit.25180.
  • Costello CM, Sorna RM, Goh Y-L, Cengic I, Jain NK, March JC. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm. 2014;11(7):2030–2039. doi:10.1021/mp5001422.
  • Creff J, Courson R, Mangeat T, Foncy J, Souleille S, Thibault C, Besson A, Malaquin L. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials. 2019;221:119404. doi:10.1016/j.biomaterials.2019.119404.
  • García-Díaz M, Cendra MDM, Alonso-Roman R, Urdániz M, Torrents E, Martínez E. Mimicking the intestinal host–pathogen interactions in a 3D in vitro model: the role of the mucus layer. Pharmaceutics. 2022;14(8):1552. doi:10.3390/pharmaceutics14081552.
  • Verhulsel M, Simon A, Bernheim-Dennery M, Gannavarapu VR, Gérémie L, Ferraro D, Krndija D, Talini L, Viovy J-L, Vignjevic DM, et al. Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions. Lab Chip. 2020;21(2):365–377. doi:10.1039/D0LC00672F.
  • Kim W, Kim G. Intestinal villi model with blood capillaries fabricated using collagen-based bioink and dual-cell-printing process. ACS Appl Mater Inter. 2018;10(48):41185–41196. doi:10.1021/acsami.8b17410.
  • Kim W, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Theranostics. 2020;10(6):2495–2508. doi:10.7150/thno.41225.
  • Kimura H, Yamamoto T, Sakai H, Sakai Y, Fujii T. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip. 2008;8(5):741–746. doi:10.1039/b717091b.
  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–10. doi:10.1039/c2lc40074j.
  • Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol. 2013;5(9):1130. doi:10.1039/c3ib40126j.
  • Delon LC, Guo Z, Oszmiana A, Chien -C-C, Gibson R, Prestidge C, Thierry B. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models. Biomaterials. 2019;225:119521. doi:10.1016/j.biomaterials.2019.119521.
  • Maurer M, Gresnigt MS, Last A, Wollny T, Berlinghof F, Pospich R, Cseresnyes Z, Medyukhina A, Graf K, Gröger M, et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials. 2019;220:119396. doi:10.1016/j.biomaterials.2019.119396.
  • Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW, Bein A, Swenor B, Nestor B, Cronce MJ, Tovaglieri A, et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng. 2019;3(7):520–531. doi:10.1038/s41551-019-0397-0.
  • Duncan CL, Strong DH. Ileal loop fluid accumulation and production of diarrhea in rabbits by cell-free products of clostridium perfringens. J Bacteriol. 1969;100(1):86–94. doi:10.1128/jb.100.1.86-94.1969.
  • Punyashthiti K, Finkelstein RA. Enteropathogencity of Escherichia coli I. Evaluation of mouse intestinal loops. Infect Immun. 1971;4(4):473–478. doi:10.1128/iai.4.4.473-478.1971.
  • Everest PH, Goossens H, Sibbons P, Lloyd DR, Knutton S, Leece R, Ketley JM, Williams PH. Pathological changes in the rabbit ileal loop model caused by Campylobacter jejuni from human colitis. J Med Microbiol. 1993;38(5):316–321. doi:10.1099/00222615-38-5-316.
  • Flamant M, Aubert P, Rolli-Derkinderen M, Bourreille A, Neunlist MR, Mahe MM, Meurette G, Marteyn B, Savidge T, Galmiche JP, et al. Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosoglutathione. Gut. 2011;60(4):473. doi:10.1136/gut.2010.229237.
  • Yum LK, Byndloss MX, Feldman SH, Agaisse H. Critical role of bacterial dissemination in an infant rabbit model of bacillary dysentery. Nat Commun. 2019;10(1):1826. doi:10.1038/s41467-019-09808-4.
  • Fasano A, Noriega FR, Liao FM, Wang W, Levine MM. Effect of shigella enterotoxin 1 (ShET1) on rabbit intestine in vitro and in vivo. Gut. 1997;40(4):505. doi:10.1136/gut.40.4.505.
  • Faherty CS, Harper JM, Shea-Donohue T, Barry EM, Kaper JB, Fasano A, Nataro JP. Chromosomal and plasmid-encoded factors of shigella flexneri induce secretogenic activity ex vivo. PLoS One. 2012;7(11):e49980. doi:10.1371/journal.pone.0049980.
  • Hecht G, Marrero JA, Danilkovich A, Matkowskyj KA, Savkovic SD, Koutsouris A, Benya RV. Pathogenic Escherichia coli increase Cl– secretion from intestinal epithelia by upregulating galanin-1 receptor expression. J Clin Invest. 1999;104(3):253–262. doi:10.1172/JCI6373.
  • Beltinger J, Del Buono J, Skelly MM, Thornley J, Spiller RC, Stack WA, Hawkey CJ. Disruption of colonic barrier function and induction of mediator release by strains of Campylobacter jejuni that invade epithelial cells. World J Gastroenterol. 2008;14(48):7345–7352. doi:10.3748/wjg.14.7345.
  • Jafari NV, Kuehne SA, Minton NP, Allan E, Bajaj-Elliott M. Clostridium difficile-mediated effects on human intestinal epithelia: modelling host-pathogen interactions in a vertical diffusion chamber. Anaerobe. 2016;37:96–102. doi:10.1016/j.anaerobe.2015.12.007.
  • Isenmann R, Schwarz M, Rozdzinski E, Marre R, Beger HG. Aggregation substance promotes colonic mucosal invasion of enterococcus faecalis in an ex vivo model. J Surg Res. 2000;89(2):132–138. doi:10.1006/jsre.1999.5813.
  • Nickerson KP, Senger S, Zhang Y, Lima R, Patel S, Ingano L, Flavahan WA, Kumar DKV, Fraser CM, Faherty CS, et al. Salmonella typhi colonization provokes extensive transcriptional changes aimed at evading host mucosal immune defense during early infection of human intestinal tissue. EBioMedicine. 2018;31:92–109. doi:10.1016/j.ebiom.2018.04.005.
  • Li M, Graaf IAMD, Groothuis GMM. Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research. Expert Opin Drug Metab Toxicol. 2016;12(2):175–190. doi:10.1517/17425255.2016.1125882.
  • Schwerdtfeger LA, Ryan EP, Tobet SA. An organotypic slice model for ex vivo study of neural, immune, and microbial interactions of mouse intestine. Am J Gastrointest Liver Physiol. 2016;310(4):G240–8. doi:10.1152/ajpgi.00299.2015.
  • Kolesnikov M, Farache J, Shakhar G. Intravital two-photon imaging of the gastrointestinal tract. J Immunol Methods. 2015;421:73–80. doi:10.1016/j.jim.2015.03.008.
  • Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler A-K, et al. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol. 2021;2(4):1115–1143. doi:10.1039/D1CB00024A.
  • Soulet D, Paré A, Coste J, Lacroix S, Sensi SL. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy. PLoS One. 2013;8(1):e53942. doi:10.1371/journal.pone.0053942.
  • McGrath CJ, Laveckis E, Bell A, Crost E, Juge N, Schüller S. Development of a novel human intestinal model to elucidate the effect of anaerobic commensals on Escherichia coli infection. Dis Model Mech. 2022;15(4). doi:10.1242/dmm.049365.
  • Deng L, Tan KSW. Interactions between Blastocystis subtype ST4 and gut microbiota in vitro. Parasit Vector. 2022;15(1):80. doi:10.1186/s13071-022-05194-x.
  • Luchan J, Choi C, Carrier RL. Reactive oxygen species limit intestinal mucosa-bacteria homeostasis in vitro. Sci Rep. 2021;11(1):23727. doi:10.1038/s41598-021-02080-x.
  • Flores J, Okhuysen PC. Genetics of susceptibility to infection with enteric pathogens. Curr Opin Infect Dis. 2009;22(5):471–476. doi:10.1097/QCO.0b013e3283304eb6.
  • Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SR, Albertson SB, Stanaway JD, Deshpande A, Abebe Z, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the global burden of disease study 2016. Lancet Infect Dis. 2018;18(11):1211–1228. doi:10.1016/S1473-3099(18)30362-1.
  • Man, A. L., Gicheva, N., Regoli, M., Rowley, G., De Cunto, G., Wellner, N., Bassity, E., Gulisano, M., Bertelli, E., Nicoletti, C., et al. CX 3 CR1 + Cell–Mediated Salmonella Exclusion Protects the Intestinal Mucosa during the Initial Stage of Infection. J Immunol. 2017;198(1):335–343. doi:10.4049/jimmunol.1502559